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ABSTRACT

In the field of medical imaging, image registration methods are useful for many

applications such as inter- and intra-subject morphological comparisons, creation of

population atlases, delivery of precision therapies, etc. A user may want to know

which is the most suitable registration algorithm that would work best for the in-

tended application, but the vastness of medical image registration applications makes

evaluation and comparison of image registration performance a non-trivial task. In

general, evaluating image registration performance is not straightforward because in

most image registration applications there is an absence of “Gold Standard” or ground

truth correspondence map to compare against. It is therefore the primary goal of this

thesis work to provide a means for recommending the most appropriate registration

algorithm for a given task. One of the contributions of this thesis is to examine image

registration algorithm performance at the component level. Another contribution

of this thesis is to catalog the benefits and limitations of many of the most com-

monly used image registration evaluation approaches. One incremental contribution

of this thesis was to demonstrate how existing evaluation methods can be applied in

the midpoint coordinate system to evaluate some symmetric image registration algo-

rithms such as the SyN registration algorithm. Finally, a major contribution of this

thesis was to develop tools to evaluate and visualize 2D and 3D image registration

shape collapse. This thesis demonstrates that many current diffeomorphic image reg-

istration algorithms suffer from the collapse problem, provides the first visualizations
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of the collapse problem in 3D for simple shapes and real human brain MR images,

and provides the first experiments that demonstrate how adjusting image registration

parameters can mitigate the collapse problem to some extent.
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PUBLIC ABSTRACT

From ultrasound exams that an expectant mothers get before birth, to routine

CT/MRI screenings during the course of our lives, medical imaging is an integral

part of human life. Medical imaging has advanced to the point of not only visualizing

human anatomy, but also being able to provide information for diagnosis and ther-

apy. Image registration is a key component in medical imaging that allows mapping

of anatomical structures between images. In this work, an assessment of current im-

age registration techniques is made, and novel approaches for evaluating registration

performance are introduced. The contributions made in this work will help improve

image registration accuracy, which in turn will ultimately advance the research in

diagnosis and therapy of diseases.
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CHAPTER 1

INTRODUCTION

Image registration is the process of determining the geometrical transformation

that maps point-wise correspondence from one image coordinate system to another.

In the field of medical imaging, image registration methods are useful for many appli-

cations such as inter- and intra-subject morphological comparisons, creation of popu-

lation atlases, delivery of precision therapies, etc. [18]. Rigid registration is a method

in which the mapped transformation preserves all distance, straightness of lines (and

the planarity of surfaces) and all nonzero angles between straight lines [28]. A rigid

transformation is restricted to a few degrees of freedom, namely translation and rota-

tion. In contrast, non-rigid image registration is more general and its transformation

offers many degrees of freedom, but is more complex and computationally expensive

to implement than rigid registration. In 1998, Maintz et al. in [46] presented a sur-

vey of publications concerning medical image registration techniques, summarizing

various methods, dimensionality, nature of registration basis, nature and domain of

the transformation, interaction, optimization procedure, modalities involved, subject,

object, and validation schemes. The authors presented 18 classifications of head im-

age registration applications alone, providing an estimate of the vastness of medical

image registration applications. However, the vastness of medical image registration

applications makes evaluating image registration performance a non-trivial task, and

additional degrees of freedom and complexity makes evaluating non-rigid methods
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more challenging than rigid methods. In general, evaluating image registration per-

formance is not straightforward because in most image registration applications there

is an absence of “Gold Standard” or ground truth correspondence map to compare

against. For instance, a feature present in one image may be missing in another, re-

sulting in an unknown correspondence over that feature. But even if both images have

the same number of features, it is still difficult to establish a perfect correspondence

relationship at all scale levels.

While evaluating the performance of an image registration algorithm is chal-

lenging, it is yet more challenging to make comparisons between the performance of

algorithms. A user may want to know which is the most suitable registration algo-

rithm that would work best for the intended application. One of the biggest challenge

in trying to compare the performance of one registration algorithm to another is that

it is difficult to make unbiased one-to-one comparisons. More often than not, the data

and methods used to evaluate the performance of one algorithm may not coincide with

that of another algorithm. Unless the registrations are performed by those who are

most experienced with the algorithms on a common dataset and evaluated with the

same methods, there is no basis for saying that one algorithm is better than the other.

Furthermore, every medical imaging application that requires image registration has

different performance expectations and it may often be the case that a user may want

an algorithm to perform well for a subset of evaluation criteria while its performance

in other criteria is negligible. For example, an application that involves the propaga-

tion of a segmentation mask to a population to initialize a segmentation algorithm
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may only require approximate matching of the mask regions if the segmentation algo-

rithm needs just an approximate initialization point to complete the task; but it may

be the case that the user expects the algorithm to perform very swiftly to produce

the approximate registrations. It is therefore the primary goal of this thesis work to

provide a means for recommending the most appropriate registration algorithm for a

given task.

1.1 History of Medical Image Regisration Evaluation

In this section, we briefly review some of the previous medical image registra-

tion evaluation studies.

One of the earliest large-scale evaluation work of image registration methods

was the “Retrospective Image Registration and Evaluation” (RIRE) project led by

Fitzpatrick of Vanderbilt University published [71], which involved 11 groups applying

15 different rigid image registration algorithms to selected registration tasks involving

the registration of brain CT and/or PET to MR. All nine patient image data sets

contained MR scans of three types (T1, PD and T2), with seven of the data sets

containing CT scans and the other seven PET scans. The images were acquired

with fiducial markers attached to the skull, and the “gold standard” transformations

were computed using a fiducial-based registration method. Then the fiducial markers

were removed from the images using an “air brushing” process and the resulting

image data sets were made available to all project participants by means of FTP. The

participants then submitted their registration results using a specified protocol of

common coordinate system and format indicating the transformed positions of eight
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points. This project introduced three important image registration error measures.

The first error measure is the target registration error (TRE). The TRE is defined as

the Euclidean distance of each registered point. The target error TRE(x) is the true

measure of registration error at the point x. Given a point in the template image,

the TRE is defined as the Euclidean distance between the transformed location of the

point and the location true corresponding point in the target image. Fitzpatrick et al.

also introduced the notion of fiducial localization error (FLE) and fiducial registration

error (FRE). The FLE is defined as the error between the computed center of a fiducial

marker and the true center of a fiducial marker. The FRE is defined as the root-mean-

square error in fiducial alignment between image space and physical space. FRE is

easy to measure, but it is not as important as target registration error, TRE. The

FRE is often used as a surrogate for the TRE. Fitzpatrick further proved that FRE

and TRE are uncorrelated [27].

In 2007, Fitzpatrick et al. introduced version 2 of the RIRE project (RIRE2)

[26]. In this ongoing study, investigators evaluate their non-rigid registration algo-

rithms. Investigators download the evaluation images, register the multimodality

images with their own algorithms and then submit their transformations for TRE

evaluation.

Another notable early work conducted in a large scale on non-rigid image reg-

istration algorithms was the Vista project (INRIA-CNRS, Rennes) led by Christian

Barillot [34], proposing an evaluation framework based on seven local and global mea-

sures of the relevance of the registration. In this work, six registration methods (five
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non-rigid and one rigid) were applied on a database of T1-weighted brain MR scans of

18 subjects. All participants downloaded the data and performed registrations with-

out knowing the evaluation criteria, and submitted the resulting deformation fields

for evaluation. Registration performance evaluation was focused on the matching of

cortical regions since the methods are dedicated to the anatomical and functional

normalization. Anatomically meaningful features were extracted from all MR image

volumes for evaluation purposes, but the features were selected so that they were

not related to the “forces” used to drive the registration process. Global evaluation

measures used to evaluate registration performance were average volume (of regis-

tered deformed 17 subjects), overlap of gray and white matter tissues, correlation

of Lvv (to distinguish between sulci and gyri) and consistency of the deformation

field (using Jacobian of transformation). The local evaluation measures used were

distance between registered sulci (which were segmented and compared visually first)

and statistical study of deformed shapes (i.e., registered sulci). ANOVA tests were

conducted on some of the measures to compare intergroup and intragroup variances

for statistical significance of the measures. The authors questioned the impact of

reference subject choice on the results, but cited studies that showed that this choice

has minimal influence on the results. Some of the challenges faced in this work in-

cluded the lack of feasibility to compare the methods on the basis of computation

time, sensitivity to parameters, difficulty to implement, etc. because of independent

registration processes by the participants, and resource management and transfer of

large transformation data.
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More recently, there has been a steady increase of image registration evalu-

ation/comparison works being conducted. In 2009, Yassa et al. [76] evaluated the

performance of cross-participant registration techniques for MRI studies of the me-

dial temporal lobe. T1-weighted brain MR scans of 20 patients were used to evaluate

the registration performance of 12 non-rigid image registration algorithms. The reg-

istrations were performed by the author on either manually labeled brain regions,

weighted masks for these regions, or original unlabeled brains. The registration re-

sults were evaluated using two methods: overlap (target overlap) scores of registered

manual segmentations of subregions of the MTL (hippocampus, parahippocampal

cortex, perirhinal cortex and entorhinal cortex), and FWHM smoothness of the av-

erage warped structural scans produced by each method (based on the concept that

misalignment due to tissue type mismatch resulting from registration errors leads to a

blurry mean image). Additionally, the performance of diffeomorphic methods (DAR-

TEL, Demons and LDDMM) at aligning subfields of the hippocampus in a subset of

scans using the overlap score method. The authors made note of the computation

speed of each algorithm, mentioning some semi-automatic procedures for some algo-

rithms, and that LDDMM-based methods required software and hardware that are

currently only available to very few sites (JHU-CIS being one of them).

In 2009, Klein et al. [41, 42] evaluated 14 non-rigid and one rigid image reg-

istration algorithms on 80 manually labeled T1-weighted brain MRIs. The image

data sets were acquired from four different sources (LPBA40, IBSR18, CUMC12 and

MGH10). The author acquired the registration software from their respective authors
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and performed over 45,000 registrations locally. The project employed eight different

error measures to evaluate algorithms: target, mean and union volume overlap mea-

sures (over all labeled regions), target, mean and union surface overlap measures (of

surfaces generated by Freesurfer), volume similarity (over all labeled regions) and dis-

tance error (of labeled region boundaries). In addition, two different statistical tests

(permutation and one-way ANOVA) were performed to get around the issue of non-

independence of samples, and an indifference-zone ranking was performed to highlight

practical, rather than statistical significance of the measures. The authors noted the

average runtime, degrees of freedom and year developed for each algorithm. Some of

the difficulties encountered in this work include the challenges in learning how to run

each algorithm, handling different data formats, and there remains the question of

whether the algorithms performed optimally with default parameters. Additionally,

the author notes that while the evaluation measures relying on information which

is not directly included in the images may be good for evaluating the registrations,

they do not inform us about the intrinsic properties of the spatial transformations.

A similar work on volume-based and surface-based brain image registration methods

was published in 2010 [42].

The EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration

2010) challenge was organized in conjunction with the Grand Challenge workshop

at MICCAI 2010 [51, 52]. This competition provided a public platform for compar-

ison of registration algorithms applied to thoracic CT data. A set of 30 thoracic

CT intra-patient scan pairs were selected to represent a broad variety as possible of
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the scenarios encountered in clinical practice. Variations of the thoracic scan pairs

consisted of breathhold inspiration pairs, breathhold inspiration and expiration pairs,

4D data pairs, ovine data pairs, contrast/non-contrast pairs, and artificially warped

pairs. The challenge was divided into two phases in which participants downloaded

20 of the 30 pairs of thoracic CT scans, performed registrations and submitted the

transformations to the organizers for the first phase, and participants took part in a

3-hour workshop to register the remaining 10 pairs and submit their results for the

second phase. The performance of 20 non-rigid image registration algorithms were

evaluated using four evaluation categories: alignment of lung boundaries, alignment

of major fissures, correspondence of annotated landmark pairs, and singularities in

the deformation field. A ranking system had been devised to measure a participant’s

overall performance and to compare participants with each other. Additional informa-

tion such as automation of the registration process, transformation model, similarity

measures, computational resource, etc. were collected and the results and ranking

have been made available on the EMPIRE10 website empire10.isi.uu.nl.

Other related evaluation works include [40], [32], and a formal model for defin-

ing and reporting evaluation and validation protocols in medical image processing was

proposed by Jannin et al. [37]. Overall, all of the major evaluation works mentioned

above involved registering common image data sets using various image registration

algorithms and evaluating the resulting transformations using a set of evaluation

methods on common evaluation data. Some works involved the principal evaluator

performing all tasks including the registrations, while others involved participants

empire10.isi.uu.nl
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applying their own algorithms on the downloaded image data set and submitting the

transformations for evaluation. The latter evaluation scheme is preferred because

the algorithm should be configured by those who are thoroughly familiar with all

aspects of its behavior in order to obtain optimal performance [52]. None of the

works provided a common tool that participants could use to evaluate image regis-

tration performance so that further alterations could be made if necessary to make

improvements to the registration results before reporting.

1.2 Dissertation Overview

The purpose of this dissertation is to provide a framework for evaluating non-

rigid image registration algorithm performance. This dissertation is divided into three

main chapters. Chapters 2 and 3 provide the mathematical formulation of many of

the most common image registration algorithms and image registration evaluation

methods, respectively. Chapter 4 provides practical experiments that puts the theory

into practice. We now preview each chapter in more detail.

• Chapter 2: This chapter describes the major components of an image reg-

istration algorithm and provides the foundation for understanding how each

component affects image registration performance. Almost any image registra-

tion algorithm can be constructed by combining the algorithmic components

described in this chapter. This chapter is divided into three parts. The first

part describes some of the most common transformation models and discusses

their pros and cons. Specifically, we discuss how the number of degrees of free-

dom of each transformation model impacts how well one image can be deformed
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into the shape of another. The second part of this chapter describes some of the

most common similarity cost functions. The similarity cost function determines

which features and how these features are used for registration, e.g., landmarks,

contours, surfaces or intensities. The final part of this chapter describes some

of the most common regularization cost functions. A regularization cost func-

tion is used to impose desired properties on the transformation model such

as smoothness or continuum mechanical behaviors like that of a linear elastic

material or viscous fluid.

• Chapter 3: This chapter describes many of the major evaluation methods

used for evaluating image registration performance. It also describes how these

methods can be applied in the midpoint coordinate system to evaluate the per-

formance of image registration algorithms that match two images in the mid-

point coordinate system. This chapter discusses the shape collapse problem that

many state of the art diffeomorphic image registration algorithms suffer from.

This chapter provides new methods for predicting, detecting and visualizing 2D

and 3D shape collapse.

• Chapter 4: This chapter provides experimental evaluation of some of the most

common image registration algorithms. This chapter is not intended to be an

exhaustive comparison between image registration algorithms, but rather as a

demonstration of the image registration framework described previously in this

dissertation. The last part of this chapter provides 2D and 3D experiments that

demonstrate the shape collapse that may occur when registering binary images
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and real 3D MRI brain images. These experiments are the first to visualize 3D

shape collapse. This chapter also discusses how modifying image registration

algorithm parameters can, to some extent, mitigate the shape collapse problem.

• Chapter 5: This chapter summarizes the contributions of this dissertation.

One of the major contributions of this dissertation is the work on the 2D and

3D shape collapse problem.
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CHAPTER 2

IMAGE REGISTRATION

In general, an image registration algorithm is composed of four major parts:

transformation model, similarity cost function, regularization cost function and opti-

mization method. Different registration algorithms can be synthesized by combining

different combinations of these components. In this thesis, we seek to understand

what components of the registration algorithm affect the quality of the registration.

In most cases, the optimization method only impacts the speed of the computation

and not the quality of the registration. However, this is not always true such as in

the case of stochastic optimization methods. In stochastic optimization methods the

optimization approach is a significant part of the algorithm since it may avoid some

of the problems with getting stuck in local minima. Not with standing this issue,

we chose to focus this thesis on the performance implications of the transformation

model, cost function and regularization method and not on the optimization method.

Another practical reason that we did not focus on evaluating the impact of

different optimization methods is that this would have required us to implement each

algorithm using different optimization methods. This is clearly beyond the scope of

this work.

This chapter is organized into three sections. The first section reviews some

of the common small and large deformation transformation models, respectively. We

use the continuum mechanics definitions of small and large deformations. A small



www.manaraa.com

14

deformation transformation is a transformation in which local strains and rotations

are both small. On the other hand, a large deformation transformation is a transfor-

mation in which local strains and rotations are both large. The second section of this

chapter reviews some of the common similarity cost functions. Finally, the chapter

ends with a discussion of the some common regularization cost functions.

We now define some common terms that will be used for the remainder of this

thesis. Let I1 : Ω → Rd and I2 : Ω → Rd be a pair of images, where d indicates the

number of components of the image (i.e., d = 1 for scalar-valued images, d = 3 for

RGB color images, etc.). Let I1(x) be the moving (or template) image, whose coor-

dinate system x ∈ Ω establishes the coordinate-intensity relationship of the image,

where Ω ⊆ Rn is the image domain (n = 2 for 2D and n = 3 in 3D space). Similarly,

let I2(y) be the fixed (or target) image, with coordinate system y ∈ Ω. The fixed

image coordinate system will also be referred to as the reference image coordinate

system. Define ϕ : Ω → Ω as the push-forward (or Lagrangian) transformation that

transforms a point x in the moving image coordinate system to a point y in the fixed

image coordinate system. The moving image is transformed into the target image co-

ordinate system by the action of transformation ϕ applied to the image I1. We define

the action of ϕ on I1 as ϕ ·I1 , I1 ◦ϕ−1 = I1(ϕ−1) where ◦ denotes the composition of

two functions. The inverse transformation ϕ−1 is called the pullback transformation

and is often denoted as h in this work.
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2.1 Transformation Models

This section describes some of the most common small and large deforma-

tion transformation models. A small transformation model is a transformation that

has small local strains and small local rotations where as, a large transformation

model is characterized by large local strains and large local rotations. Unlike large

deformations, small deformations are not able to register images that require curved

trajectories such as deforming a patch to a C-shape or a circle to a C-shape[12].

Small deformation transformation models are useful because many shapes that are

registered in medical imaging only differ by small deformations. Small deformation

models are often simple, i.e., have a small number of degrees of freedom. As a result

small deformation algorithms often can be implemented efficiently and some can even

be computed in real-time.

This section progresses from simple small deformation transformation models

to more complex large deformation models. One should assume that a transformation

model is a small deformation model unless otherwise stated.

2.1.1 Rigid Transformation Model

A rigid transformation is a geometric transformation that preserves the dis-

tance relationship between every pair of points in the coordinate system. Rigid trans-

formation allows for three kinds of transformations - translation, rotation and reflec-

tion. There are many different ways to write the equation for a rigid transformation.

One typically way to write a push forward rigid transformation ϕ : Ω→ Ω is

ϕ(x) = Rx+ b, (2.1)
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where R is the rotation matrix and b the translation vector. Alternatively, a rigid

transformation is often written as a pullback transformation, i.e.,

h(y) = ϕ−1(y) = R−1(y − b) = R̃y + b̃, (2.2)

where R̃ = R−1 is a rotation matrix and b̃ = −R−1b is a translation vector.

To simplify things, we will work with the push forward transformation. In 2D,

R may be written as

R =
[
cos θ − sin θ
sin θ cos θ

]
, (2.3)

where θ is the rotation angle about the origin. In 3D, there are three axes of rotation.

Thus, one possible parametrization of a rotation matrix is R = Rz(γ)Ry(β)Rx(α),

where

Rx =

[
1 0 0
0 cosα − sinα
0 sinα cosα

]

Ry =

[
cos β 0 sin β

0 1 0
− sin β 0 cos β

]

Rz =

[
cos γ − sin γ 0
sin γ cos γ 0

0 0 1

]
(2.4)

are rotation matrices along the x, y and z-axis with rotation angles α, β and γ, re-

spectively. Note that the order of rotation (in other words, the order of matrix multi-

plication) is important. Changing the order rotation gives a different parametrization

of the rotation matrix.

A disadvantage of writing a rotation matrix as a product of three rotation

matrices is that it suffers from the problem of gimbal lock. Gimbal lock is the

loss of one degree of freedom in a three-dimensional rotational system. It occurs

when the axes of two of the three axes of rotation are driven into a parallel config-
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uration, “locking” the system into rotation in a degenerate two-dimensional space

(https://en.wikipedia.org/wiki/Gimbal lock).

Parameterizing the rotation matrix in terms of quaternions is one way to avoid

gimbal lock. A quaternion can be defined in a similar manner to a complex number,

i.e., q = a + bi + cj + dk where the symbols i, j, and k satisfy the relationships

j2 = k2 = i2 = ijk = −1. One possible quaternion parametrization of a 3D rotation

matrix is given by

R(q) =

[
1− 2c2 − 2d2 2(bc− da) 2(bd+ ca)

2(bc+ da) 1− 2b2 − 2d2 2(cd− ba)
2(bd− ca) 2(cd+ ba) 1− 2b2 − 2c2

]
, (2.5)

where q = a+ bi + cj + dk is a unit quaternion.

Equations 2.1 and 2.2 describe rigid rotations about the origin. In order to

rotate about the point p in the domain of the transformation, one must first translate

the center of rotation p to the origin, apply the rotation and then translated back.

For example, transforming Eq. 2.1 to rotate about the point p gives the equation

ϕ(x) = R(x− p) + b+ p. (2.6)

Notice that Eqs. 2.1 and 2.6 are equal when the center of rotation p = 0.

Rigid transformations are useful for registering intra-patient data scanned with

the same scanner with same spatial settings, since the type of motion introduced for

such a dataset usually only involves translation and rotation. Due to the small number

of parameters, rigid registration algorithms are extremely fast to compute and are

often used for real-time registration. Rigid transformation is customarily used to

align the image pair (e.g., alignment of AC-PC points in brain MR image pair) prior



www.manaraa.com

18

to non-rigid image registration.

2.1.2 Affine Transformation Model

An affine transformation has more degrees of freedom than a rigid transforma-

tion. An affine transformation allows for scaling, shearing, rotation and translation.

In fact, rigid transformation is a special case of the more general affine transformation

with restrictions on the distances. A 3D push forward affine transformation can be

written in the form

ϕ(x) = Ax+ b, (2.7)

where A is a 3×3 matrix with nonzero determinant and b is a 3×1 translation vector.

This transformation can also be rewritten as

[
ϕ(x)

1

]
=
[

A b
0 . . . 0 1

] [
x
1

]
. (2.8)

2.1.3 N-th Order Polynomial Transformation Model

The Automatic Image Registration (AIR) by Woods et al. [72, 75, 73, 74]

uses an N-th order polynomial transformation model. A polynomial in m variables

x1, . . . , xm with real coefficients can be defined in the following way. Let α denote a

multi-index, i.e., α is defined as α = (α1, . . . , αm), where each αi is a non-negative

integer. A monomial with multi-index α is defined as

xα =
m∏

i=1

xαi
i = xα1

1 · · ·xαm
m . (2.9)

We define the degree of a monomial, denoted as |α|, as |α| = ∑m
i=1 αi. A polynomial in

m variables is defined as a finite linear combination of monomials with real coefficients
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p =
∑

α

pαx
α, (2.10)

where pα = pα1,...,αm ∈ R, and only finitely many coefficients pα are nonzero.1 The

degree of a polynomial p is the largest degree of a monomial occurring with non-zero

coefficient in the expansion of p.

An N-th order polynomial pullback transformation h : R3 → R3 is defined as

h(y) =
∑

0≤|α|≤N

[pαqαrα
]
yα (2.11)

where pα, qα, rα ∈ R.

Using the stars and bars algorithm2, the degrees of freedom of an N-th order

polynomial p in m dimensional space is dof(p) = m

(
m+N

m

)
. Thus, the degrees of

freedom of the transformation h given in Eq. 2.11 is dof(h) = m

(
m+N

m

)
.

2.1.4 B-spline Transformation Model

Rueckert et al. [55] was the first group to use a cubic b-spline transformation

model in the medical imaging community. An example of a b-spline transformation

model is given by

h(y) = y +
3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)ai+l,jm,k+n (2.12)

where i = by1/δ1c − 1, j = by2/δ2c − 1, k = by3/δ3c − 1, u = y1/δ1 − (i + 1),

v = y2/δ2− (j+ 1), u = y3/δ3− (k+ 1), and ai+l,jm,k+n ∈ R3 are the parameters. The

1For example, a 5th order polynomial p = 5x1x
2
2x3 + 3x2

1x
2
2x3 + x5

1 can be expressed
as p = p(1,2,1)x

(1,2,1) + p(2,2,1)x
(2,2,1) + p(5,0,0)x

(5,0,0), where p(1,2,1) = 5, p(2,2,1) = 3, and
p(5,0,0) = 1.

2https://en.wikipedia.org/wiki/Stars and bars (combinatorics)
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B-spline basis functions B0(t) through B3(t) are shown in Fig. 2.1 and defined as

B0(t) = (−t3 + 3t2 − 3t+ 1)/6,

B1(t) = (3t3 − 6t2 + 4)/6,

B2(t) = (−3t3 + 3t2 + 3t+ 1)/6,

B3(t) = t3/6 (2.13)

for 0 ≤ t ≤ 1.

t

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B0

B1

B2

B3

Figure 2.1. Cubic B-spline basis functions B0(t), B1(t), B2(t) and B3(t).

The cubic b-spline parametrization given in Eq. 2.12 is not convenient for

computing partial derivatives. Therefore, an alternative but equivalent cubic b-spline

transformation is given by

h(y) = y +

N1∑

i=−1

N2∑

j=−1

N3∑

k=−1

ai,j,kB̃(y1/δ1 − i)B̃(y2/δ2 − j)B̃(y3/δ3 − k) (2.14)

= y +

N1∑

i=−1

N2∑

j=−1

N3∑

k=−1

[
ai,j,k,1
ai,j,k,2
ai,j,k,3

]
B̃(y1/δ1 − i)B̃(y2/δ2 − j)B̃(y3/δ3 − k) (2.15)
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where

B̃(t) =





(3|t|3 − 6|t|2 + 4)/6, |t| ≤ 1

(2− |t|)3/6, 1 ≤ |t| ≤ 2

0, otherwise

(2.16)

and ai+l,jm,k+n ∈ R3. The cubic b-spline basis function B̃ is shown in Figs. 2.2 and

2.3.

t
-3 -2 -1 0 1 2 3

B
(t

)

0

0.2

0.4

0.6

0.8
Cubic B-spline, Grid Spacing 1

t
-3 -2 -1 0 1 2 3

B
'(
t)

-1

-0.5

0

0.5

1
1st Derivative of Cubic B-spline, Grid Spacing 1

Figure 2.2. Cubic B-spline and the first derivative of a cubic B-spline with knot
spacing one.

t
0 1 2 3 4 5 6 7

B
(t

)

0

0.2

0.4

0.6

0.8
Shifted Cubic B-splines, Grid Spacing 1

Figure 2.3. Shifted cubic B-splines with knot spacing one.
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2.1.5 Fourier Series Transformation Model

A transformation can be parameterized using a 3D Fourier series [1, 14, 49,

16, 48]. In this model, each parameter is the weight of a harmonic component in a

single coordinate direction.

Note that image registration algorithms are often formulated on the continuum

but are discretized for implementation. Let I1 and I2 represent 3D image volumes of

voxels dimension N1 × N2 × N3. Define Ωd = {(n1, n2, n3)|0 ≤ n1 < N1; 0 ≤ n2 <

N2; 0 ≤ n3 < N3; and n1, n2, n3 are integers} as the set of voxel lattice coordinates

of the discrete images I1 and I2. Let k = [k1, k2, k3] and n = [n1, n2, n3]. The

displacement fields are defined to have the form

u(y) =
∑

k∈Ωd

µ[k]ej<y,Nθ[k]> (2.17)

for y ∈ Ω where µ[k] are 3 × 1 complex-valued vectors, θ[k] = [2πk1
N1

, 2πk2
N2

, 2πk3
N3

]T

and Nθ[k] = [2πk1, 2πk2, 2πk3]T . The notation < ·, · > denotes the dot product

of two vectors such that < y,Nθ[k] >= 2πk1y1 + 2πk2y2 + 2πk3y3. The pullback

transformation is then given by

h(y) = y + u(y). (2.18)

A Fourier series transformation is periodic in x and therefore has cyclic bound-

ary conditions for x on the boundary of Ω. The displacement fields are real because

the coefficients µ[k] are constrained to have complex conjugate symmetry. Fourier

series transformations are efficient to compute since they can be computed using the

Fast Fourier Transform (FFT). One disadvantage of this parametrization is that each
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of its basis functions (i.e., sines and cosines) have infinite support. The implication

of using a basis with infinite support is that that all the coefficients must be updated

to accommodate a local deformation. As a result, the Fourier series coefficients are

sensitive to small changes in the transformation and this causes slow convergence for

registration algorithms that use this parametrization.

2.1.6 Vector Field Transformation Model

The most general form of a small deformation transformation is a vector field

transformation model, i.e., a transformation that is parameterized by a displacement

vector at each voxel location. Unlike the previous transformation models, adjacent

values of the transformation/displacement field are not linked together by any pa-

rameters, i.e., the value of the transformation at each point in the voxel lattice Ωd

is independent of the transformation at any other point in Ωd. It is for this rea-

son that a vector field transformation model is referred to as a non-parameterized

transformation.

A vector field transformation model has the most degrees of freedom of any

transformation model. The number of degrees of freedom is equal to the number of

voxels in the image times the dimension of the image being registered. For example,

a 3D transformation of a 2563 voxel image has 3× 2563 ≈ 5× 109 parameters.

As a result of the large number of parameters, image registration algorithms

that use vector field transformation models must use regularization (See Section

2.3.1). Regularization reduces the number of degrees of freedom and it imposes corre-

lations between a transformation vector a point p and all the transformation vectors
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in a neighborhood of p.

2.1.7 Large Deformation Time-dependent Velocity Field Transformation Model

Large deformation transformation models are defined as transformations that

have locally large rotation and locally large strains. In general, large deformation

transformation models can accommodate registration problems that require either

large or small deformations. However, large deformation models are generally more

complicated than small deformation transformation models so would not necessarily

be the correct choice for small deformation applications.

In this work, we will restrict our conversation to large deformation transfor-

mation models that can be modeled as a flow of diffeomorphisms. This approach was

made popular through the work of Trouvé, Miller, Younes, Dupuis, Beg and Grenan-

der [64, 22, 8] for large deformation diffeomorphic metric mapping (LDDMM). In this

approach, the diffeomorphic transformation that registers image I1 to I2 is estimated

as the end point of the flow associated to a smooth time-dependent vector field. Let

v : [0, 1]→ V be a time-dependent velocity vector field where V is a Hilbert space of

smooth, compactly supported vector fields on Ω. The velocity vector field v defines

a flow of diffeomorphisms φv : [0, 1]→ G as the solution of the ODE

d

dt
φvt (x) = vt (φvt (x)) (2.19)

where G is the set of diffeomorphisms on Ω and the superscript in φv denotes the

dependence of φ on v. The initial condition of the flow φv at time t = 0 is φv0 = Id

where Id is the identity transformation. The end point of the flow φv at time t = 1 is

the desired diffeomorphism ϕ = φv1 that registers I1 to I2. Thus, the goal for the large
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deformation tranformation model is to find a time-dependent velocity vector field v

that when integrated via Eq. 2.19 generates the diffeomorphism ϕ that matches I1 to

I2.

The time-dependent velocity field is often parametrized via a time varying

vector field (See Section 2.1.6) [8] or by time varying momenta [50, 23, 24].

2.1.8 Large Deformation Stationary Velocity Field Transformation Model

A simple variation on the time-dependent velocity field diffeomorphic trans-

formation model presented in the last section is to assume that the velocity vector

field v ∈ V is stationary, i.e., v is constant for time 0 ≤ t ≤ 1. The large deformation

stationary velocity field transformation model was made popular by the diffeomorphic

demons image registration algorithm and its variants [66, 67].

For the case of stationary velocity fields, Eq. 2.19 changes to

d

dt
φvt (x) = v (φvt (x)) (2.20)

were the velocity vector field v is no longer a function of time t.

The diffeomorphic transformation produced by a stationary velocity field has

fewer degrees of freedom than a transformation produced by a time-dependent velocity

field. As a result, a diffeomorphism produced by a stationary velocity field is more

limited than a diffeomorphism produced by a time varying velocity field. On the other

hand, a stationary velocity field requires less computer storage than a time varying

velocity field and there are efficient algorithms for generating the diffeomorphism from

a stationary velocity field [10].
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In a similar fashion to time varying velocity fields, stationary velocity fields

are often parametrized using vector fields or by momenta.

Table 2.1. Summary of transformation models and their properties.

Transformation Model Small/Large
Deformation

Degrees of
Freedom

2D

Degrees of
Freedom

3D

Rigid Small 3 6

Affine Small 6 12

d-th order polynomial Small
(
d+2

2

) (
d+3

3

)

Cubic B-splines Small (bN
n
c+ 3)2 (bN

n
c+ 3)3

Fourier Series Small 2(2h+ 1)2 3(2h+ 1)3

Displacement Field Small 2N2 3N3

Viscous Fluid (vector
field)

Large 2N2 3N3

Stationary velocity
(momenta)

Large varies varies

Stationary velocity
(vector field)

Large 2N2 3N3

Time-dependent
velocity field
(momenta)

Large varies varies

Time-dependent
velocity field (vector
field)

Large 2N2T 3N3T
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2.2 Similarity Cost Functions

Similarity cost functions measure the similarity (or dissimilarity) between two

images and are positive functions that measure the distance between two images

or between features in the two images. The closer the cost is to zero, the closer

the two images are in appearance. In most cases, image registration algorithms are

formulated as a cost minimization problem of which the similarity cost is one of the

costs that is minimized. The following examples illustrate how the similarity cost

function is used in image registration. In the case of registering the faces of two

individuals, we would expect the key features such as eyes, nose and mouth to be

mapped together. A simple similarity cost function would take the center position

of the eyes, nose and mouth of both faces and then compute the average distance

between the corresponding center points. If the two images were identical, then the

center points would align and the similarity cost would be zero. Alternatively, if one

face was of a child and another of an adult, then the center lines would not align and

the similarity cost would return some positive distance between the two images. In a

more complex example of lung registration, we would expect features such as airways,

vessels and fissures to match. In some special cases, physical markers (called fiducials)

can be implanted in the subject being imaged so that they can be used as reference

points for registration. Generally, however, most image registration applications lack

such a priori information and usually resort to minimizing the overall difference of the

metrics that are used for registration. In the following sections, the most commonly

used similarity metrics in image registration will be outlined.
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2.2.1 Point-based Similarity Cost Functions

The simplest case of measuring correspondence between two image features is

the zero-dimensional case of point-based metrics.

2.2.1.1 Landmark Distance Similarity Cost Functions

Suppose there are identifiable points (such as branching points of airways and

vessels) in an image, and their corresponding counterparts can also be identified in

the image to be registered. This set of points is known as landmarks, and the usual

implication is that there is a 1-to-1 relationship between the landmarks. Landmarks

can either be a physical marker (fiducials) that is inserted into the subject before being

imaged, or a virtual marker picked out manually by experts or automatically (or semi-

automatically) by landmarking software. Landmark distance measures the distance

(usually Euclidean) between corresponding points in the images being registered. The

solution to a registration problem is obtained by minimizing the sum of distances of

all the corresponding points.

2.2.1.2 Closest Point Similarity Cost Functions

In some cases, it may not be possible to identify correspondence between points

in the images. Moreover, it may be that the number of identified points in one image

may not equal the number of points in another image. To tackle such problems,

Besl et al. [9] introduced a method that iteratively finds the closest distance between

clouds of unmatched points, known as the Iterative Closest Point (ICP) method.
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2.2.2 Subvolume-based Similarity Cost Function

Another feature that is used to register images are sub-volumes. Sub-volumes

are more commonly referred to as regions of interest (ROIs). Matching ROIs is similar

to matching landmarks, curves and surfaces. ROIs are used for matching when one

wants to match sub-volumes of an image and the intensity within the sub-volume is

not important. Thus, an ROI similarity cost function can be used for both mono-

modality or multi-modality registration.

Assume that we want to register images I1 and I2 that contain M ROIs. Define

the indicator image I1,k(x) to be one for x in the ROI of image I1 and zero otherwise

for k = 1, . . . ,M . Define the images I2,k in a similar fashion using the target image

I2. The ROI similarity cost function is then given by Eq. 2.22 where the images I1,k

and I2,k are the ROI indicator images for k = 1, . . . ,M .

2.2.3 Voxel Intensity-based Similarity Cost Functions

2.2.3.1 Sum-of-Squared Difference (SSD) Similarity Cost Functions

The sum-of-squared difference (SSD) similarity cost functions was the first

intensity based similarity cost functions used for medical image registration [7, 49].

The SSD similarity cost function assumes that corresponding points in the two images

that are being registered have the same or similar intensities. The SSD similarity cost

function is given by

SSD(I1, I2) =

∫

Ω

(I1(x)− I2(x))2dx. (2.21)

The SSD cost function can be extended to register two image sets that have

N corresponding modalities. For example, it is common to acquire multiple MRI
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modalities such as T1, T2 and spin density on the same subject. In this case, each

modality measures a different magnetic quantity at each coordinate location. The

extension of Eq. 2.21 to register two image sets having N corresponding modalities is

given by

SSD(I1, I2) =
N∑

k=1

∫

Ω

wk(I1,k(x)− I2,k(x))2dx (2.22)

where it is assumed that the k-th image of I1 is the same modality as the k-th image

of I2 and wk are weights for each modality. The weights can be used to make one

modality more important than another. If all modalities are equality important, then

the weights are all set to one.

It is also possible to make the weights very spatially as shown in the following

cost function

SSD(I1, I2) =
N∑

k=1

∫

Ω

wk(x)(I1,k(x)− I2,k(x))2dx (2.23)

Spatially varying weights are useful if you want to mask out regions of the image

that are not important for registration. For example, it is common in brain image

registration to set wk(x) to one for x locations inside the brain and set wk(x) to zero

otherwise.

2.2.3.2 Normalized Cross Correlation Similarity Cost Function

The normalized cross correlation (NCC) similarity cost function [62, 4] is an

intensity based similarity cost. Two images are put into register by maximizing the

NCC. The NCC similarity cost only cares about correlations of intensities in local

neighborhoods of the template and target images and not the actual voxel intensities.
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Thus, it can be used for both mono-modality and cross-modality image registration.

The NCC cost is computed as follows. For each point x in the target image, the

correlation is computed for a neighborhood patch centered at x the template image

with a neighborhood patch centered at x in the target image. The correlation at each

point x is then normalized. Finally, the NCC cost is then computed by integrating

each of these normalized neighborhood correlations.

We now provide the numerical formulation of the NCC similarity cost function.

For each x ∈ Ω, let N(x) ⊂ Ω denote a neighborhood of x. Let µ1(x) =
∫
N(x) I1(y)dy∫

N(x) dy

and µ2(x) =
∫
N(x) I2(y)dy∫

N(x) dy
denote the average intensities of I1 and I2 in the neighborhood

N(x), respectively. Next, define Ī1(x, y) = I1(y)− µ1(x) and Ī2(x, y) = I2(y)− µ2(x)

for y ∈ N(x) to be the intensity normalized, neighborhood image patches at x ∈ Ω

of the template and target images, respectively. The normalized correlation between

the template and target images at x is then given by

NCC(I1, I2, x) =

(∫
N(x)

Ī1(y)Ī2(y)dy
)2

√∫
N(x)

Ī1(y)Ī1(y)dy
√∫

N(x)
Ī2(y)Ī2(y)dy

(2.24)

and the NCC similarity cost function is then given by

NCC(I1, I2) =

∫

Ω

NCC(I1, I2, x)dx. (2.25)

Equations 2.24 and 2.25 are discretized for implementation. The neighborhood is

often chosen to be a 3× 3× 3 or 5× 5× 5 voxel neighborhood.

2.2.3.3 Mutual Information Between Two Images

The mutual information (MI) between two images [69, 36, 44] measures the

similarity of two images as a function of image intensity. Two images are put into
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register by maximizing the MI. The mutual information between two images is a

function of the joint histogram between the template and target images. The MI

computed from the joint histogram is based on the histogram values and not the

pixel intensities. Thus, MI can be used for both mono-modality and multi-modality

image registration.

The MI can be formulated mathematically as

MI(I1, I2) = H(I1) +H(I2)−H(I1, I2), (2.26)

where H(I1, I2) is the joint entropy of images I1 and I2; and H(I1) and H(I2) are the

marginal entropies of H(I1, I2). The joint entropy is calculated as

H(I1, I2) = −
∑

m∈M

∑

n∈N

p(m,n) log(p(m,n)) (2.27)

where M is the set of gray levels in image I1, N is the set of gray levels in image

I2, and p(m,n) is the probability of intensity m in I1 and intensity n in I2 occurring

at the same location x ∈ Ω. The probabilities p(m,n) are computed from the joint

histogram of the images I1 and I2. Parzen-window density estimation is often used to

form a better estimate of the probabilities than just using the normalized histogram

values[69, 36]. The marginal entropies are given by

H(I1) = −
∑

m∈M

p(m) log(p(m)) (2.28)

and

H(I2) = −
∑

n∈N

p(n) log(p(n)). (2.29)
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Using these equations, the mutual information between two images can be rewritten

as

MI(I1, I2) =
∑

m∈M

∑

n∈N

p(m,n) log

(
p(m,n)

p(m)p(n)

)
. (2.30)

Many variations of MI have been proposed throughout the years. Common

variants include those that vary the intensity bin sizes, those that use a priori mod-

els for estimating joint intensity probabilities, and those that use different intensity

interpolation schemes.

2.2.3.4 Matching using Demons

The original demons image registration algorithm proposed by Thirion [63]

was based on the optical flow equations. Since then, Pennec et al. [53, 66, 67, 68]

have shown that the demons image registration approach can be reformulated as a

close approximation to minimizing the SSD similarity cost function. Thus, all the

modern implementations of demons use the SSD similarity cost function.

2.2.4 Attribute Matching Similarity Cost Function

The hierarchical attribute matching mechanism for elastic registration (HAM-

MER) [57, 58] image registration algorithm is an example of an algorithm that uses

attribute matching. An attribute matching similarity cost function is any cost func-

tion that uses local intensity attributes or features to register two images. The term

attribute matching similarity cost function encompasses a whole class of similarity

cost functions that are all related to each other. The defining characteristic of this

type of similarity cost function is that they all compute the distance between two

images based on some function of the local features extracted from the images. The
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attribute matching similarity cost function can be used for both mono-modality and

multi-modality image registration.

An example of an attribute matching similarity cost function is given by

AM(I1, I2;h) =

∫

Ω

ω(x)

(∫
N(x)

ε(z)(1−m(a1(h(z)), a2(z)))dz
∫
N(x)

ε(z)dz

)
dx (2.31)

where h is the pullback transformation that maps attributes in the template coordi-

nate system to the target coordinate system. The function ε(x) assigns a spatially

varying weight function that is used to give variable weights to each voxel in the target

image I2. The function N(x) refers to the neighborhood of the point x in the target

coordinate system. The weight function ε(z) assigns larger values to the boundary

voxels in the target coordinate system, since those voxels are important anatomical

features and are typically easy to find in the images of sufficient contrast. The vector

valued functions a1(z) and a2(z) are the attribute vectors at the location z in the

template and target images, respectively. The function m measures the similarity of

two attribute vectors with the range from zero to one. See [57, 58] for examples of

attribute vectors and attribute similarity functions.

2.3 Registration Regularization and Constraints

Image registration algorithms often incorporate one or more types of regular-

ization and/or constraints. Regularization is used to reduced the number of degrees

of freedom of a registration algorithm while constraints are used to impose some de-

sired property on the resulting correspondence map. Regularization and constraints

are often implemented as cost functions, as Lagrange multipliers or by construction.

It is often the case that a single cost function can both have a regularization effect



www.manaraa.com

35

and a constraining effect. For example, applying a low pass filter to a nonparametric

transformation can have a regularization effect by inducing neighborhood correlations

and a constraining effect by imposing a continuity property on the transformation.

For this reason, regularization conditions are often referred to as constraints. This

section will discuss the effects of regularization and constraints on image registration

algorithms.

2.3.1 Regularization

Image registration algorithms are often under-determined, i.e., the transforma-

tion used in an image registration algorithm has more unknown parameters/degrees

of freedom than equations needed to solve for them all. One way to reduce the num-

ber of degrees of freedom is to use regularization. Regularization reduces the number

of degrees of freedom by inducing correlations between parameters. For example,

image registration algorithms that use a nonparametric transformation, i.e., those

that are parametrized by a vector field, always require regularization. A common

regularization strategy used in this case is to correlate vector values in a local spatial

neighborhood at each voxel location. The most common way this is accomplished is

by using some sort of a bending energy constraint or a linear elasticity constraint.

The bending energy cost function is often written as

BE1(u) =

∫

Ω

||Lu(x)||2dx =

∫

Ω

< Lu(x), Lu(x) > dx =

∫

Ω

< L†Lu(x), u(x) > dx

(2.32)

or

BE2(u) =

∫

Ω

< Gu(x), u(x) > dx (2.33)
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where L and G = L†L are self adjoint, differential operators and † is the adjoint

operator.

Examples of L are

• Membrane model: G = ∇2 where ∇ = [ ∂
∂x1
, . . . , ∂

∂xn
]T and ∇2 = ∂2

∂x21
+ . . .+ ∂2

∂x2n

are the n-th dimensional gradient and Laplacian operator, resepectively.

• Thin-plate spline model: L = ∇2.

• Linear elasticity model: G = µ∇2+η∇·∇ where µ and η are the Lamé constants.

• Thin-plate Linear elasticity model: L = µ∇2 + η∇ · ∇

In general, L can be any matrix of differential operators as long as it is self adjoint

[31].

These same linear differential operators can be used to constrain the velocity

field for diffeomorphic image registration (see Sec 2.1.7). Using these differential

operators to constrain the velocity field induces a reproducing kernel Hilbert space

(RKHS) structure on the set of allowable velocity fields. The kernel of the RKHS

is often chosen to be a Gaussian kernel. Velocity fields with a kernel with large the

standard deviation are stiff and have a small number of degrees of freedom. On

the other hand, velocity fields with a kernel with small standard deviation are more

flexible and have a large number of degrees of freedom. Thus, adjusting the kernel

size (standard deviation) of the Gaussian kernel is one way to regularize diffeomorphic

image registration algorithms.



www.manaraa.com

37

2.3.2 Image Registration Constraints

Image registration constraints are used to induce desired properties on the

transformation that defines the correspondence between two images. Image registra-

tion constraints are achieved by using cost functions or by construction.

2.3.3 Constraints on the Jacobian of the Transformation

One of the common constraints placed on a transformation is that it is a

diffeomorphism. A diffeomorphism is a transformation that is a bijection (one-to-one

and onto), it is differentiable and its inverse is differentiable.

A transformation is said to fold space at x ∈ Ω if its Jacobian determinant

is negative at x. A transformation is said to be singular at x ∈ Ω if its Jacobian

determinant is zero at x. The reason why it is important that the a transformation be

a diffeomorphism is so the transformation does not fold space. A sufficient condition

that a transformation does not fold space is that the Jacobian determinant of the

transformation is positive for all x ∈ Ω.

One way to enforce that a transformation is a diffeomorphism is by construc-

tion as in Section 2.1.7.

An alternative way to constrain a transformation to be a diffeomorphism is

by penalizing the Jacobian determinant and the inverse Jacobian determinant. The

Jacobian registration constraint is given by [14]

JRC(h) =

∫

Ω

| det(J(h(x)))|dx+

∫

Ω

∣∣∣∣
1

det(J(h(x)))

∣∣∣∣ dx (2.34)

where J(h) is the Jacobian matrix of the transformation h and det(·) is the determi-

nant operator. Note that this cost function does not enforce that the transformation
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h is a diffeomorphism. Instead, the JRC penalizes transformations that are close to

being singular, i.e, minimizing the JRC function attempts to prevent singular trans-

formations by giving these transformations large penalty costs.

2.3.4 Inverse Consistency

An image registration algorithm is said to be inverse consistent if it produces

a forward transformation and a backward transformation that are inverses (or near

inverses) of each other. Equivalently, an image registration algorithm is inverse con-

sistent if it is symmetric, i.e., it does not matter which image is chosen as the template

image and which image as the target image.

An image registration algorithm can impose inverse consistency or near inverse

consistency on a forward transformation h and a backward transformation g using an

inverse consistency cost (ICC) function. The inverse consistency cost is given by

ICC(h, g) =

∫

Ω

||h(x)− g−1(x)||2dx+

∫

Ω

||g(x)− h−1(x)||2dx. (2.35)

Note that h and g are only inverses of each other if the inverse constency cost is zero.

In practice, the ICC can be made very small so h and g can be considered nearly

inverse consistent.

Another way to enforce inverse consistency is by construction. One such

construction is given by the following. An unidirectional similarity cost function,

such as those given in Section 2.2, can be symmetrized. For example, suppose

SSD(I1, I2, h) =
∫

Ω
||I1(h(x))− I2(x)||2dx is the sum of square differences (SSD) cost

function. The unidirectional SSD cost function can be made symmetric by adding to
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it the cost function SSD(I2, I1, h
−1) [57], i.e.,

SSDSYM = SSD(I1, I2, h) + SSD(I2, I1, h
−1)

=

∫

Ω

||I1(h(x))− I2(x)||2dx+

∫

Ω

||I1(x)− I2(h−1(x))||2dx.

Notice that for this similarity cost function, it does not matter if I1 is the template

and I2 is the target or the roles are reversed.

Another construction to ensure inverse consistency is to deform the template

and target images to a midpoint coordinate system. The difference between the

template and target images are compared in the midpoint coordinate system. For

example, suppose SSD(I1, I2) =
∫

Ω
||I1(x)−I2(x)||2dx is the sum of square differences

(SSD) cost function. This cost function can be converted to a midpoint coordinate

system SSD cost function as follows

SSDMP =

∫

Ω

||I1(h(x))− I2(g(x))||2dx (2.36)

where h is the transformation that maps image I1 into the midpoint coordinate system

and g is the transformation that maps image I2 into the midpoint coordinate system.

The transformation that deforms image I1 into the coordinate system of I2 is given by

h ◦ g−1. Likewise, the transformation g ◦ h−1 transforms image I2 into the coordinate

system of image I1. One can see that these two transformations are inverses of each

other by composing them, i.e., (h◦ g−1)◦ (g ◦h−1) = Id where Id is the identity map.

2.3.5 Transitivity

The transitivity property of a transformation is a property on a group of trans-

formations that register a group of images [15]. Let H = {h1, . . . , hN} be a set of
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diffeomorphic transformations from Ω to Ω that registers the images I = {I1, . . . , IM}.

The set H is said to satisfy the transitivity property if h◦g◦f = Id for all h, g, f ∈ H

such that f is the transformation from Ii to Ij, g is the transformation from Ij to Ik

and h is the transformation from Ik to Ii for i 6= j 6= k and 1 ≤ i, j, k ≤ M . An im-

age registration algorithm that produces transformations that satisfy the transitivity

property also satisfies the inverse consistency property. However, an image regis-

tration algorithm that produces inverse consistent transformation do not necessarily

satisfy the transitivity property.

Characterizing groupwise image registration algorithms is beyond the scope of

this thesis. See Christensen et al. [15] for more information about a groupwise image

registration algorithm that has a transitivity constraint.
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CHAPTER 3

IMAGE REGISTRATION EVALUATION METHODS

In order to evaluate how well a registration algorithm performed in mapping

the coordinate systems of two images, we first need to identify what sort of common

features are shared between the two images. For example, prominent features in

lung CT volumes typically consist of lung boundaries, fissures, airways, and vessels.

Naturally, we expect each of these features in one image to map to its corresponding

feature in a successfully registered image. However, due to reasons such as poor image

quality or illness, extraction of certain features from images may not be reliable, or

worse yet, not possible at all. Furthermore, in situations such as multi-modality

registration, features that are obvious in one modality may not be as obvious in

another modality. It is also important to emphasize that just because certain features

lined up perfectly does not imply perfect registration (e.g., the aperture problem is

a classic example of bad registration despite perfect boundary correspondence.) The

following sections describe various different types of measures that can be used to

evaluate image registration performance.

3.1 Feature and Image Similarity Evaluation

The most natural approach to evaluating image registration performance is to

measure how well the algorithm performed in terms of similarity metrics. Oftentimes,

the similarity metrics used to evaluate registration performance are not the same as

the ones used for registration. For example, a registration algorithm might only use
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voxel intensity information to drive the registration, while landmarks are used for

evaluation. Public registration competitions such as the EMPIRE10 challenge did

just that - only the lung images and masks were made available to the participants,

but landmarks and segmentations of boundaries and fissures were used to evaluate

registration performance. In the following sections, common similarity metric-based

evaluation methods and their pros and cons will be outlined.

3.1.1 Landmark Error

Let Ω be a subset of R3. Let Im : Ω → R and If : Ω → R be template

and target images to be registered, respectively. Let a pair of points p ∈ Ω and

q ∈ Ω identify a landmark in images Im and If , respectively. Then, for N landmark

locations, we obtain point sets P = {p1, p2, ..., pN} and Q = {q1, q2, ..., qN}. Before

registration, the misalignment of the landmarks in image pair Im and If is measured

with Preregistration Mean Landmark Error (MLEpreregistration), which is defined as

MLEpreregistration =
N∑

i=1

‖pi − qi‖ ,

where ‖·‖ is the standard Euclidean norm.

For a pair of registered images where φ : Ω → Ω is the push-forward (i.e.,

Lagrangian) transformation that maps coordinate system x ∈ Ω of Im to coordinate

system y ∈ Ω of If . Then the MLE for the registered landmark set is defined as

MLE =
N∑

i=1

‖φ(pi)− qi‖ , (3.1)

evaluating the location of each deformed landmark point in the template image coordi-

nate space with respect to their corresponding location in the target image coordinate
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space. However, because of issues arising from discretization of images, registration

algorithms generally represent transformations in the pullback (i.e., Eulerian) sense,

mapping coordinate system y to coordinate system x. This means that for pullback

transformation h : Ω→ Ω, the MLE can be written as

MLE =
N∑

i=1

‖pi − h(qi)‖ , (3.2)

evaluating the location of the deformed landmark points with respect to the template

image landmark points.

Typically, most landmark error evaluations are carried out using Eq. 3.1, be-

cause it is straight-forward and does not require any more than the original trans-

formation generated by the registration algorithm. This does not pose any problem

or inconvenience if comparing landmark error values before and after registration is

the desired mode of evaluation. However, it is often desirable that landmark points

in the template image coordinate space be projected into the target image coordi-

nate space for evaluation, especially because the landmark points can be juxtaposed

on top of the deformed image for visual inspection. If a pullback transformation

has a closed-form inverse, the inverse is the push-forward transformation. However

in general, most inverses of transformations must be obtained through an iterative

estimation process, and transformations of some algorithms are not invertible at all

(i.e., creates singularities). Certain groups of registration algorithms, such as [14],

[33], [8], [29], [2], [66], [3], [67] and [4] ensure that the transformations are invertible

by enforcing diffeomorphism or symmetric constraints. Given that the registration

algorithm provides either a push-forward transformation out of the box, or an invert-
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ible transformation, it is more useful to perform landmark evaluations on the target

image coordinate system so that landmark alignment performance can be evaluated

against other evaluation metrics on the same coordinate system.

The advantage of landmark-based evaluation of registration performance is

that it provides a direct measure of how well known correspondences line up after

registration. However, landmark error only ensures registration correspondence ac-

curacy at landmark locations and does not provide any correspondence information

at non-landmark locations. This means that in order to get better estimation of reg-

istration accuracy using landmark error, a dense population of landmark points is

desired.

Furthermore, as mentioned in [28], there are errors involved with localization

of landmarks. Fiducial Localization Error (FLE) is a measure of of erroneous dis-

placement of a landmark point from its true location. FLE can occur from several

sources: discretization error, noise and algorithm error. Typically, features that are

used to localize landmark points are several voxels in size, and quite likely irregular in

shape. This means that locating the centroid of the landmark feature is challenging,

and even if a centroid was successfully located at a voxel level, it does not guarantee

this location is the true centroid of the feature in physical space. Furthermore, if

noise is present in the image, this may affect the accuracy of localizing the centroid

of the feature being landmarked. Finally, error may be introduced by how accurately

the localization algorithm (manual, semi-automatic or automatic methods) locates

the landmark point. FLE is a type of error that cannot be observed directly, but
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its impact can be observed indirectly from the registration error caused by it. Since

FLE is present in both images being registered, there is a level of uncertainty involved

with landmark error measures - in other words, perfect landmark error does not equal

perfect alignment of landmarks in physical space. One of the ways to alleviate FLE

is to have multiple observers localize the landmarks, and averaging the location.

3.1.2 ROI Overlap Evaluation

The alignment of objects, structures, organs, regions of interest (ROIs), etc.,

are a good indicator of how well two images are registered. These subvolumes are

defined by partitioning or segmenting an image into objects or ROIs. The relative

overlap of segmentations is a measure of how well two corresponding segmented re-

gions agree with each other.

Assume Si and Ti are defined as the ith segmented region in the deformed

source and target volumes. Then the three different kinds of volume overlap measures

are defined as follows:

• Target overlap

TOi(Si, Ti) =
|Si ∩ Ti|
|Ti|

• Mean overlap (also known as DICE coefficient)

MOi(Si, Ti) = 2
|Si ∩ Ti|
|Si|+ |Ti|

• Union overlap (also known as relative overlap)

UOi(Si, Ti) =
|Si ∩ Ti|
|Si ∪ Ti|



www.manaraa.com

46

Apart from determining the minimum and maximum overlaps, each overlap measures

can be totaled or averaged over the entire volume.

Target overlap is a simple way of measuring region overlap which is defined by

the volume the deformed region in the source overlaps with the corresponding region

in the target. This way of defining overlap works fine as long as the two related regions

have the same volume. However, if the two regions being compared have different

volumes, the percentage overlap values may not accurately report the same concept.

50% target overlap does not imply half of one region overlaps half of another. In fact,

100% target overlap of S2 and T2 can be achieved by half of region S2 overlapping

entire region T2. Therefore, it can be concluded that target overlap is generally a

measure that is susceptible to volume discrepancies.

Mean overlap, otherwise known as the DICE coefficient, is an improvement

over target overlap which takes the ratio of the overlapping volume over the mean

volume of both regions. With this modification, mean overlap of S1 and T2 is 50%,

and mean overlap of S2 and T2 is 33.3%. This is certainly a major improvement over

target overlap.

Union overlap, which is also called relative overlap, is very similar to mean

overlap and also tackles the deficiency of target overlap. The difference of union

overlap over mean overlap is that instead of the denominator being the mean volume

of both regions, it is now the union volume of both regions. With this definition,

union overlap of S1 and S2 is 33.3%, and 20% for S2 and T2.

An intrinsic problem of any volume overlap measure is the fact that the overlap
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ratio does not automatically account for the volume biases. In other words, 90%

relative overlap of two regions of volume 1000 voxel3 would yield an overlapping

region of volume 900 voxel3, while 100% relative overlap of volume 100 voxel3 would

yield an overlapping region of volume 90 voxel3. Clearly, while 100% relative overlap

map be an impressive number, it may not necessarily imply better match if the actual

volumes of regions in comparison are considered. Therefore, it is recommended to

account for volumes biases when computing any overlap measure, such as normalizing

by volume.

Another fundamental problem with volume overlap measure is that definitions

of regions may not be clear-cut and be susceptible to variance. This variance may

be large in applications where there is a lack of contrast between regions. Some

such example would be the segmentation of prostate and bladder from CT volumes,

or defining a functional atlas of brains using fMRI. Even having the same expert

perform the segmentations does not guarantee repeatability over time and equipment

used.

While volume overlap may provide an indication of macroscopic global match

performance, it fails to provide any information about the match performance within

the regions. For example, even if the deformed source region and the target region

shows good overlap measures, it does not guarantee that the mapping of each micro-

scopic local regions or points are equally as good. Therefore, volume overlap may be

considered a better global performance measure than local performance measure.
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3.1.3 Average Volume Difference

Defining volume as the sum of voxel intensities, similarity between two regis-

tered images can be measured by comparing their volumes. One method to measure

registration performance using volume similarity is to compute average region-wise

volume difference between a population of images registered with a target image.

Thus, Average Volume Difference (AVD) across region R of M images registered

with target image Tj is defined as

AVDj,R =
1

M

M∑

i=1

(
1

|R|
∑

x∈R

Ti(hij(x))− 1

|R|
∑

x∈R

Tj(x)

)2

(3.3)

where hij is the Eulerian transformation that maps a point in image Ti to point x in

Tj, R = {x1, x2, · · · , xN} is a subregion of N voxels in Tj, and |·| is the cardinality

operator denoting the number of voxels in a region. The differences of the mean

volumes were used instead of direct sums because a pair of registered regions may

not have the same number of voxels. For an ideal set of registrations, AVD will equal

zero.

3.1.4 Average Sum of Squared Differences

Assuming that a pair of registered images differ only by Gaussian noise, reg-

istration accuracy can be evaluated by measuring voxel intensity difference of the

registered image pair. A common way to measure voxel intensity difference is sum

of squared differences, which is sensitive to small number of voxels with very large

intensity differences [56, 20]. To minimize the effects of noise, population-based SSD

will be employed in this work. For a population of M images registered with target
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image Tj, Average Sum of Squared Differences (ASSD) across region R is defined as

ASSDj,R =
1

M

M∑

i=1

∑

x∈R

(Ti(hij(x))− Tj(x))2 (3.4)

where hij is the Eulerian transformation that maps a point in image Ti to point x in

Tj, and R = {x1, x2, · · · , xN} is a subregion of N voxels in Tj. For an ideal set of

registrations, ASSD will equal zero.

3.1.5 Intensity Variance

Besides measuring sum of squared differences of registered image intensities,

registration performance can be evaluated by registering a population of images with

a target image and averaging the intensities of the registered images. The idea behind

this is that the better the registration algorithm is, the closer each registered image

looks to the target image and the sharper the intensity average image [59, 70]. One

way to measure the sharpness of the intensity average image is to compute the inten-

sity variance of the registered images. Intensity Variance (IV) image of a population

of M images registered to image Tj is computed as

IVj(x) =
1

M − 1

M∑

i=1

(Ti(hij(x))− avej(x))2 where avej(x) =
1

M

M∑

i=1

Ti(hij(x)),

(3.5)

Ti is the ith image of the population and hij(x) is the transformation from image Ti

to Tj with respect to a Eulerian coordinate system. In an ideal case where all images

are perfectly registered with the target image, IV will equal zero.
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3.1.6 Average Correlation Coefficient

Correlation coefficient measures the linear dependence between the intensities

of two registered images based on the assumption that registered images have linear

intensity relationship [56, 20]. Average Correlation Coefficient (ACC) of a population

of M images registered to image Tj over region R is defined as

ACCj,R =
1

M

M∑

i=1

∑
x∈R

(Ti(hij(x))− T̄i)(Tj(x)− T̄j)
√∑

x∈R
(Ti(hij(x))− T̄i)2 · ∑

x∈R
(Tj(x)− T̄j)2

, (3.6)

where hij is the Eulerian transformation mapping image Ti to Tj, and R =

{x1, x2, · · · , xN} is a subregion of N voxels in Tj. For mono-modal image registration

applications, a set of perfectly registered images will result in an ACC of one.

3.1.7 Average Mutual Information

Mutual information measures the statistical dependence between the intensi-

ties of corresponding voxels in a pair of images, which is assumed to be maximal if

the images are registered [19, 43, 61, 44, 45, 54]. Average Mutual Information (AMI)

of a population of M images registered to image Tj over region R is defined as

AMIj,R =
1

M

M∑

i=1

∑

x∈R

pij(Ti(hij(x)), Tj(x))log2
pij(Ti(hij(x)), Tj(x))

pi(Ti(hij(x))) · pj(Tj(x))
(3.7)

where hij is the Eulerian transformation mapping image Ti to Tj, R = {x1, x2, · · · , xN}

is a subregion of N voxels in Tj, pij, pi and pj are the joint and marginal distributions

of the pair (Ti(hij(x)), Tj(x)) and of Ti(hij(x)) and Tj(x), respectively.

3.1.8 Midpoint Registration Error

The traditional approach to measure registration performance is to evaluate

correspondence either in the coordinate system of the moving image or the fixed
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image. However, with certain group of registration algorithms such as [8], [29], [2],

[66], [3], [67], [35], [4] and [6] that parametrize transformation as a time-integral of

time-varying or stationary velocity fields, registration evaluation can be performed

in the transient space. In this group of algorithms, the push-forward transformation

ϕ : Ω → Ω from the moving image coordinate system, x ∈ Ω, to the fixed image

coordinate system, y ∈ Ω, is defined as

y = ϕ(x) = φ0(x) +

∫ 1

0

vt(φt(x))dt (3.8)

where vt : Ω → Rn, t ∈ [0, 1] is the time-varying velocity vector field specified by

the ODE φ̇t = vt(φt) and φt : Ω → Ω, t ∈ [0, 1] is the transformation that maps

coordinate system x at time t = 0 to its new location at time t (i.e., φ0 = Id and

ϕ = φ1). In this setting, the optimal transformation that solves the image registration

problem in space V (a Hilbert space of smooth, compactly supported vector fields on

Ω) of vt ∈ V can be obtained by solving

v̂ = argmin
v:φ̇t=vt(φt)

(∫ 1

0

‖vt‖2
V dt+ γ

∫

Ω

Sim
(
Im ◦ φ−1

1 , If
)
dx

)
(3.9)

where Sim(·, ·) is an image similarity function such as squared-difference, cross-

correlation, etc., and Im and If are moving and fixed images, respectively. It can

be ensured that the solution to Eq. 3.9 is in the space of diffeomorphisms if norm is

defined on V through a differential operator of the type L = (−α∆ + γ)βIn×n where

β > 1.5 in 3-dimensional space such that ‖f‖V = ‖Lf‖L2 .

The symmetric diffeomorphic registration formulation is illustrated in Fig. 3.1

and described as follows:
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For a pair of images I1(x) and I2(y) with coordinate systems x,y ∈ Ω, let the

time-variant diffeomorphic forward and reverse push-forward maps be φt : Ω → Ω

and ψt : Ω → Ω respectively, where t ∈ [0, 1]. At zero optimization time t = 0,

we have the identity mappings x = φ0(x) and y = ψ0(y); and at full optimiza-

tion time t = 1, we have the full forward and reverse mappings y = φ1(x), and

x = ψ1(y). Then, by setting similarity term such as the squared difference term

∥∥I1(φ−1
0.5(z))− I2(ψ−1

0.5(z))
∥∥2

, the forward and reverse mappings are solved until time

t = 0.5, which is referred here as the “midpoint.” Finally, to get the mapping from

x to y, and vice versa, the half-time forward and reverse maps are composed as

y = ψ−1
0.5(φ0.5(x)) and x = φ−1

0.5(ψ0.5(y)), respectively.

I1(x) I2(y)

Ī1(z)

Ī2(z)

Minimize the di↵erence between Ī1 and Ī2

�0.5(x)

 0.5(y)

e.g.
��I1 � ��1

0.5(z) � I2 �  �1
0.5(z)

��2
< ✏

�1(x)

 1(y)

Figure 3.1. Illustration of the SyN registration method.
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One claim of advantage of these symmetric registration methods is that be-

cause of the diffeomorphic nature of the maps, the composition maps ψ−1
0.5(φ0.5(x))

and φ−1
0.5(ψ0.5(y)) are exact inverses of each other, resulting in perfect inverse consis-

tency in both directions. However, the symmetric property of transformations does

not guarantee proper registration. Fig. 3.2) illustrates how point p in image I1 may

be mapped to point q̂ instead of its true correspondence q, even when the forward

and reverse maps between the two images are perfectly inverse consistent.

qp

x yz

r

r = �0.5(p)

I1 I2

q̂

r =  0.5(q̂)

��I1 � ��1
0.5(r) � I2 �  �1

0.5(r)
��2

< ✏

q̂ =  �1
0.5(r)

p = ��1
0.5(r)

Ī

Figure 3.2. Illustration of midpoint error.

The main problem with such registration method is that there is no guaran-

tee that the midpoint image actually is the “mean shape” between I1 and I2. For

example, suppose we are trying to register a large circle to a small circle as shown

in Fig. 3.3. The large circle and the small circle may both map to an oval, a rect-

angle, a point, or any other arbitrary midpoint shape. Since both φ and ψ map to

the same midpoint shape, we have “perfect” registration according to the symmetric
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registration algorithm in discussion.

Ī I2I1

I1 Ī I2

Figure 3.3. Illustration of two different midpoint images that satisfy the registration
problem.

Furthermore, there is no guarantee that point r1, which is a mapping of point

p in I1 to the midpoint image coordinates by φ(p, 0.5), corresponds to point r2, which

is a mapping of point q in I2 to the midpoint image coordinates by ψ0.5(q). In other

words, although the midpoint images M1 and M2 may look exactly the same in terms

of voxel intensity, it does not guarantee that the coordinate correspondences actually

match.

Real examples of midpoint registration error is demonstrated here with simple
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2D figures as shown in Fig. 3.4. The big and small fish images in (a) and (c) were

registered using SyN registration, and the fin segmentations in (b) and (d) were used

to evaluate the pointwise correspondence within the registered fish.

(a) Template (b) Target (c) Template Mask (d) Target Mask

Figure 3.4. Big and small fish images used to demonstrate the midpoint registration
error. The fins of the fish were segmented to demonstrate where they get mapped to
after registration.

Figure 3.5 shows the registration result of the big and small fish images in

both directions, as SyN transformations are diffeomorphic. Comparing deformed

target (a) with the template, and deformed template (d) with the target, it appears

superficially that the registration was successful. Furthermore, the midpoint images

(b) and (c), which are generated by deforming the template and the target using

“half transformations” generated by the SyN algorithm as illustrated in Fig. 3.1, also

show that the forward and reverse midpoint images match. However, applying the

generated transformations to the mask images reveal that the correspondences of

the fins do not match. The deformed masks (f) and (g) at the midpoint show that

although the sum of squared difference error of (b) and (c) is small, the correspondence
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within the image is off.

(a) Deformed tar-
get

(b) Deformed tar-
get to midpoint

(c) Deformed tem-
plate to midpoint

(d) Deformed tem-
plate

(e) Deformed tar-
get mask

(f) Deformed tar-
get mask to mid-
point

(g) Deformed tem-
plate mask to mid-
point

(h) Deformed tem-
plate mask

Figure 3.5. (a) & (d) Deformed target and template towards reverse and forward
registration directions. (b) & (d) Deformed target and template towards reverse mid-
point and forward midpoint. Notice that the deformed target matches the template
shape, and vice versa. The deformed midpoint template and target also match each
other well. However, the deformed masks shown in (e) - (f) reveal that the fins are
misregistered.

Figure 3.6 shows the result of yet another SyN registration of the same fish

images. Again, the deformed template and the target appear to be registered well.

But notice that the midpoint images (b) and (c) look different from the previous

registration attempt. Although the end registration result appears identical to the

previous registration, the midpoint images tell a different story. The deformed masks
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in (e) - (h) further confirms that the registration is indeed different. Particularly,

deformed masks (f) and (g) at the midpoint shows that there are essentially infinite

number of midpoint images that can result with the same deformed template and

target images.

(a) Deformed tar-
get

(b) Deformed tar-
get to midpoint

(c) Deformed tem-
plate to midpoint

(d) Deformed tem-
plate

(e) Deformed tar-
get mask

(f) Deformed tar-
get mask to mid-
point

(g) Deformed tem-
plate mask to mid-
point

(h) Deformed tem-
plate mask

Figure 3.6. Another registration result similar to Fig. 3.5 with different registration
parameters. Notice that the midpoint images look different to the previous registra-
tion result. This shows that there are infinitely many midpoint mappings that can
produce the same deformations of the template and target.

Having shown that a registration algorithm can generate infinitely many dif-

ferent mappings to the midpoint image to produce the same end registration result,

a method for evaluating midpoint registration error is defined below.
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Let I1(x) and I2(y) be a pair of images with coordinate systems x and y,

respectively. We then define φ(x, t) as the correspondence map from image I1 to I2

with image registration optimization time, t ∈ [0, 1], such that x = φ(x, t = 0) and

y = φ(x, t = 1). Similarly, we define ψ(y, t) as the reverse mapping from image I2

to I1, such that y = ψ(y, 0) and x = ψ(y, 1). Then let M(z) be the midpoint image

between I1 and I2, mapped by z = φ(x, 0.5) and z = ψ(y, 0.5), simultaneously.

Let point pi be the ith landmark in image I1, and qi the ith landmark in

image I2 that has correspondence mapping with pi. Then, the voxel-wise Midpoint

Landmark Error (MLE) is defined as

MLEi = ‖φ(pi, 0.5)− ψ(qi, 0.5)‖2 . (3.10)

It then follows that for N landmark points, the Average Midpoint Landmark Error

(AMLE) is defined as

AMLE =
1

N

N∑

i=1

‖φ(pi, 0.5)− ψ(qi, 0.5)‖2 , (3.11)

and Maximum Midpoint Landmark Error (MMLE) as

MMLE = max
1≤i≤N

‖φ(pi, 0.5)− ψ(qi, 0.5)‖2 , (3.12)

We can observe that the Average Landmark Error (ALE) can be written as

ALE =
1

N

N∑

i=1

∥∥ψ−1(φ(pi, 0.5), 0.5)− qi
∥∥2
.

Similarly, image intensities at the midpoint can be evaluated. For image do-

main Ω of image Ī, the Average Midpoint Intensity Error (AMIE) can be written as
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AMIE =
1

|Ω|

∫

Ω

(I1(φ−1(z, 0.5))− I2(ψ−1(z, 0.5))2dz, (3.13)

and Maximum Midpoint Intensity Error (MMIE) as

MMIE = max
z∈Ω

(I1(φ−1(z, 0.5))− I2(ψ−1(z, 0.5))2 (3.14)

Note that the inverses of the transformations φ and ψ are used (i.e., Eulerian trans-

formation), because the coordinate systems of the transformations have to match.

The sum of the tangent vectors of the deformations φ and ψ with respect to

time should cancel each other at the midpoint. The analogy to this is building the

transcontinental railway from both ends of the coasts in towards the middle - if the

tangent vectors of the two railroads do not match when they meet, that will result

in an unintended sharp bend in the middle. Likewise, a geodesic registration path

should join smoothly in the middle with matched tangent vectors. Following this

intuition, the voxel-wise Midpoint Tangent Error (MTE) is written as

MTE(z) =

∥∥∥∥
∂φ−1(z, t)

∂t

∣∣∣∣
t=0.5

+
∂ψ−1(z, t)

∂t

∣∣∣∣
t=0.5

∥∥∥∥
2

. (3.15)

Once again, the inverses of the transformations φ and ψ are used to match the coordi-

nate systems. It is necessary for the transformation to be differentiable with respect

to optimization time in order for to quantify this error measure. In discrete time,

this implies that access to intermediate transformations along optimization time, or

geodesic path, must be available.
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3.2 Transformation Evaluation

3.2.1 Jacobian

The Jacobian [11, 17, 14] measures the pointwise expansion and contraction

at each point of the image. The Jacobian of the transformation at point x is defined

as

J(h(x)) =

∣∣∣∣∣∣∣

∂h1(x)
∂x1

∂h1(x)
∂x2

∂h1(x)
∂x3

∂h2(x)
∂x1

∂h2(x)
∂x2

∂h2(x)
∂x3

∂h3(x)
∂x1

∂h3(x)
∂x2

∂h3(x)
∂x3

∣∣∣∣∣∣∣
. (3.16)

In the Eularian frame of reference, a Jacobian value of one corresponds to zero expan-

sion or contraction, a value greater than one corresponds to contraction and a value

less than one corresponds to expansion. A negative Jacobian indicates singularity,

which produces a 1-to-many mapping and as a result folds the domain inside out

[17, 13]. The Jacobian evaluates the quality of the transformation rather than the

quality of registration, measuring how well the transformation preserves topology.

A transformation has to be continuous, piecewise differentiable and has a pos-

itive Jacobian in the continuous domain. However, the positivity of the Jacobian

at discretization nodes does not necessarily ensure that this property is true in the

continuous domain.

3.2.2 Inverse-Consistency

The inverse consistency and transitivity metrics evaluate registration perfor-

mance based on desired transformation properties [14, 15, 13]. The inverse consistency

metric measures the inverse consistency error between a forward and reverse trans-

formation between two images. Ideally the forward transformation equals the inverse

of the reverse transformation implying a consistent definition of correspondence be-
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tween two images, i.e., correspondence defined by the forward transformation should

be the same as that defined by the reverse transformations. Thus, composing the

forward and reverse transformations together produces the identity map when there

is no inverse consistency error. The inverse consistency error is defined as the squared

difference between the composition of the forward and reverse transformations and

the identity mapping.

The voxel-wise cumulative inverse consistency error (CICE) with respect to

template image j is computed as

CICEj(x) =
1

M

M∑

i=1

‖hji(hij(x))− x‖2

where hij is the transformation from image i to j, M is the number of images in the

evaluation population and ‖·‖ is the standard Euclidean norm. Inverse consistency

error is a measure that measures how similar the forward transformation estimated

from source to target volume is to the reverse transformation estimated from target

to source. While inverse consistency does not measure the accuracy of the transfor-

mation, it measures the consistency of the correspondence defined by forward and

reverse transformations between two coordinate systems [14]. It is important to note

that zero inverse consistency does not imply accuracy of the correspondence. For

example, an identity mapping has perfect inverse consistency, but the registration is

inaccurate for non-identical image pairs.

3.2.3 Transitivity

The transitivity metric [15, 39, 30] evaluates how well all the pairwise regis-

trations of the image population satisfy the transitivity property. The transitivity
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property is important to minimize correspondence errors when two transformations

are composed together. Ideally, transformations that define correspondence between

three images should project a point from image A to B to C to A back to the original

position. The transitivity error for a set of transformations is defined as the squared

error difference between the composition of the transformations between three images

and the identity map.

The voxel-wise cumulative transitivity error (CTE) with respect to template

image j is computed as

CTEk(x) =
1

(M − 1)(M − 2)

M∑

i=1
i 6=k

M∑

j=1
j 6=i
j 6=k

‖hki(hij(hjk(x)))− x‖2

Similarly to inverse consistency error, transitivity error is a measure of consistency of

the correspondence defined by compositions of transformations. For example, tran-

sitivity measures how similar a transformation that maps image A to B, and subse-

quently to image C, to a transformations that maps image A directly to C. Another

demonstration of perfect transitivity is when the composition of transformations from

A to B to C to A projects a point from image A back to its original position.

3.2.4 Evaluation vs. Known Transformation

Supposing the true correspondence between a pair of images is known, the

task of evaluating the performance of an image registration algorithm mapping image

correspondence becomes a simple task of comparing the known correspondence map

to the algorithm-estimated correspondence map. While the true correspondence map

between a pair of images is difficult to find in practice, a common method used
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to measure image registration performance is to generate image pairs using known

transformations generated based on some reasonable assumptions of shape variability

of real anatomies. Figure 3.7 illustrates how a known transformation can be used to

evaluate the performance of image registration algorithms.

Transform

Apply

Registration

Algorithm

)( ii xR )( ijij xT

)( ijiji xhx =

)(ˆˆ
ijiji xhx =

Reference 

Image

Target 

Image

Known 

Transformation

Estimated 

Transformation

))(( ijiji xhR=

Image 

Population 

R

Transformation 

Population

h

Pick i
th

image Pick j
th

transformation

2
11

)(ˆ)( iijiij xhxh
−−

−

Registration Error

Figure 3.7. Schematic of evaluating registration algorithm performance using known
transformations.

A population of images R = {R1, R2, . . . , RM} is used as reference images

to minimize the effect of reference image choice to the evaluation; and likewise, a

population of random transformations h = {h1, h2, . . . , hN} is used. To evaluate

the performance of an algorithm, a reference image Ri is picked from R and a known

transformation hj is picked fromH. The known transformation hj is used to transform

Ri into target image Tij. Then the algorithm under evaluation is used to estimate
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the transformation from Ti to Tij to produce the estimated transformation ĥij.

The error between the estimated transformation and the known transformation

can be computed using the following:

The average known transformation error over a region of interest A ⊆ Ω is

defined as

AKTEij(A) =

∫
A

∥∥∥hj(x)− ĥij(x)
∥∥∥

2

dx
∫
A
dx

, (3.17)

where ‖·‖ is the standard Euclidean norm.

The maximum known transformation error in a region of interest A is defined

as

MKTEij(A) = max
x∈A

∥∥∥hj(x)− ĥij(x)
∥∥∥

2

. (3.18)

It is useful to plot the magnitude of the transformation error as an image to

see the spatial distribution of the largest errors. For example, the magnitude error

image shows whether or not the errors are distributed evenly across the image or if

they only occur at the edges of objects.

Still another way to illustrate the agreement of the estimated and known

transformations is to plot the histogram of transformation errors
∥∥∥hij(x)− ĥj(x)

∥∥∥
2

,

∀x ∈ A, i.e., generate the histogram of the transformation error magnitude for all of

the points in the region of interest.

3.3 Shape Collapse Evaluation

3.3.1 Introduction

In [25], Durumeric et al. have addressed the shape collapse problem that af-

fects both small and large-deformation volumetric image registration algorithms. In
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short, the shape collapse problem is a problem that may occur when an appendage of

a foreground object in a moving image does not overlap with the foreground object

in the fixed image and the registration process causes the appendage to collapse to

a set of zero measure. Conversely, the shape collapse problem can also be seen as a

shape growth problem - i.e., background in the moving image collapses and produces

the effect of foreground object in the fixed image “growing into” an appendage. Fig-

ure 3.8 illustrate both the foreground collapse and background collapse problem. The

natural solution to the hand registration problem illustrated is to simply rotate the

index finger along the base joint while preserving the rigid shape of the finger. How-

ever, deformable registration algorithms that employ greedy optimization schemes

will invariably choose a path of steepest gradient that optimizes the cost function.

By choosing to do so, the registration process forces the index finger in the moving

image (a non-overlapping appendage) to collapse into a set of zero measure while the

background region where the index finger is located in the fixed image collapses and

pulls the surrounding foreground into the region (causing a finger to grow out of the

hand.) The collapse problem illustrated by this simple example addresses a more

complex collapse problem that has often been neglected in the past.

As illustrated in Fig. 3.9, it is plausible that in real life image registration

applications such as the alignment of the cortex, shape collapse may occur. A shape

collapse in such application causes a serious problem, as an activation region in one

brain mapping to a collapsed region in another brain would result in incorrect cor-

respondence. In fact, many such shape collapses had been observed in the past, but
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(a) Moving image (b) Fixed image (c) Difference be-
fore registration

(d) Deformed
moving image

Figure 3.8. Example of an undesirable shape collapse during volumetric image regis-
tration.

often were counteracted by regularization or neglected entirely. In this work, the

shape collapse problem is addressed in a formal manner and show how shape col-

lapse regions can be predicted, and how actual shape collapse can be detected and

measured.

In the following sections, method for predicting shape collapse regions based

on mathematical understanding of shapes and optimization methods will be outlined.

Then 2D and 3D phantoms of various shapes will be used to show how shape collapse

occurs with one of the most popular registration suites available. Finally, comparisons

will be made between predicted shape collapse points and actual shape collapse points

and theoretical reasons behind the difference will be discussed.

3.3.2 Prediction of Collapse Points

In order to understand the mechanism of shape collapse, a formal definition

of shape collapse for a pair of binary images will first be discussed. Let I1 : Ω → R
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(a) Moving image (b) Fixed image (c) Difference be-
fore registration

(d) Difference
after registration
with annotated
collapse region

Figure 3.9. Example of how shape collapse may occur in real life image registration
applications, such as the alignment of the cortex illustrated here.

and I2 : Ω→ R be the moving and fixed binary images to be registered, respectively.

Definition 3.1. For any V ⊂ Ω, the interior of V , denoted Int(V ), is the union of all

open subsets of Ω contained in V . The exterior of V , denoted Ext(V ), is the union

of all open subsets of Ω contained in Ω− V . The boundary of V , denoted by ∂V , is

the set of all points of Ω that are in neither Int(V ) nor Ext(V ) [25].

We denote subsets V1 ⊂ Ω and V2 ⊂ Ω as foregrounds of I1 and I2, respectively.

Definition 3.2. The overlap of the foreground objects V1 and V2 is denoted as W =

V1∩V2 and the non-overlap region U = U1∪U2 where U1 = V1−V2 and U2 = V2−V1

[25].

Figure 3.10 illustrates how V1 and V2 relate to each other. The foreground

collapse problem may occur when V1 has an appendage which is not included in V2
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(i.e., U1), and the growth problem (or alternatively, background collapse problem)

occurs when V2 has an appendage which is not included in V1 (i.e., U2).

Figure 3.10. Overlap of two foregrounds, V1 and V2, of a pair of images being registered
together. Regions U1 and U2 are possible collapse regions.

Next, we define the topological skeleton of the foreground as illustrated in

Fig. 3.11 as the following.

Definition 3.3. Let p be a point, and V be a subset of a metric space (Ω, d). Let

Br(p) denote the open metric balls {x ∈ Ω : d(x, p) < r}. A closed ball B ⊂ V is

called a maximal ball of V , if for every closed ball B′, B ⊆ B′ ⊆ V , one has B = B′.

The set {q ∈ V : ∃r > 0, Br(q) is maximal ball of V } is defined to be the skeleton

S(V ) of V by maximal balls [60, 25].

Figure 3.12 illustrates possible configurations of skeletal and boundary points.

For every skeletal point q ∈ S(V1), there is a unique maximal ball Br(q) centered at q,

and the set of points along the boundary ∂V1 associated to q is A∂(q) := Br(q)∩ ∂V1.
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Figure 3.11. The skeleton (red line) of foreground object V is defined as the set of
centers of all the maximal balls contained in V .

The association set A∂(q) is nonempty; there usually are two (e.g., q2) or more (e.g.,

q3 or q1) boundary points associated with the maximal ball. Only one boundary point

may be associated with a maximal ball, such as the focal point of a boundary curve

(e.g., p4). It is also possible that a single boundary point is associated with more

than one skeletal point if ∂V1 is not differentiable at p ∈ ∂V1 (e.g., p2).

For simplicity, we will first discuss the shape collapse of a simple binary shape

V1, such as the rectangle in Fig. 3.13, registering to a zero-set V2 = ∅ with no regular-

ization constraint, and assume that ∂V1 is a piecewise C1 closed curve. For a binary

image, a greedy algorithm that minimizes the similarity-cost C = ‖I1(φ(x))− I2(x)‖2

follows the cost gradient in the direction that decreases the area of V1 in the fastest

way. The Euclidean distance function d : V1 → [0,∞) to the boundary ∂V1, is given

by d(x, ∂V1) = inf {|x− y| : y ∈ ∂V1}. The gradient of the distance function, ∇d
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q1 

p1 

q2 

q2’ 

q3 

p1’ p2 

p3 

p3’’ 

p3’ 

p4=q4 

Figure 3.12. Possible configurations of the skeletal and boundary points. A skeletal
point can correspond to two (q2), three (q3) or more (q1) boundary points. Similarly,
a boundary point can have one (p4) or many (p2) associated skeletal points.

(when it exists), is perpendicular to the level sets of d (as shown in different shades

of blue in Fig. 3.13).

Definition 3.4. Let L(p, q) denote the line segment with end points p ∈ ∂V1 and

q ∈ S(V1), and L◦(p, q) = L(p, q) − {p, q} (shown as green dotted lines in Fig. 3.12)

[25].

By Proposition 1 in [25], we have that if a ∈ L◦(p, q), then p is the unique

closest point of ∂V1 to point a. Thus, the fastest area decreasing flow in the interior

of V1 is along L◦(p, q) with unit speed until the skeleton is reached. The flow is not

definable along the skeleton.

Without regularization, the area decreasing flow in the continuous space will

reduce V1 to ∅ since it will remove the skeleton along the way (as shown in Fig. 3.14)

because the deforming forces come from different directions along L(p, q). With reg-
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Figure 3.13. A simple binary shape collapse example where V1 is a rectangle (blue
region) and V2 is a zero-set. The red lines in V1 is the topological skeleton of V1. The
different shades of blue in V1 shows the Euclidean distance-to-boundary level sets.

ularization, this effect will be reduced by averaging and slowing down the area reduc-

tion.

In the discrete case, because the skeleton has zero measure, removing the

skeleton has little or no effect in minimizing the similarity cost, and thus the skeleton

remains (as shown in Fig. 3.15). Generally speaking, the skeleton reached through

the registration process does not necessarily be the same as S(V1), but it is a very

good approximation.

Figures 3.16 and 3.17 illustrate actual shape collapse observed by register-

ing a binary rectangle image rotated by 30◦ (Fig. 3.16(a)) and a binary fish image

(Fig. 3.17(a)) to a ∅ image (Fig. 3.16(b)), using a diffeomorphic registration method

with zero regularization, provided by the ANTs package [6, 5]. We observe that both

shapes deform completely into what appears to be ∅ (Figs. 3.16(c) and 3.17(c)),

further analysis of the X- and Y-displacement fields generated by the registration al-
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Figure 3.14. In the continuous area-reduction case, V1 will reduce to ∅ without
regularization since it will remove the skeleton along the way.

Figure 3.15. In the discrete area-reduction case, because removing the skeleton has
little or no effect in minimizing the similarity cost, the skeleton remains.
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gorithm (Figs. 3.16(e)-(f) and 3.17(e)-(f)) reveals that each shape actually collapsed

along the paths perpendicular to the level sets of the Maurer distance transforms

[47] shown in Figs. 3.16(d) and 3.17(d). In the continuous space, the skeletons of

each shape would have remained after deformation, but because of discretization, the

resulting image appears to be ∅. Note that the X- and Y-displacement fields, with

negative values colored in blue and positive values colored in red, shows that the

gradient flow directions of the registration process are perpendicular to the level sets

of the distance transforms, as predicted above.

Next, shape collapse for image pairs where both V1 and V2 are non-zero sets

will be described.

Definition 3.5. A point p1 ∈ ∂V1 is a collapsing point for q ∈ S(V1), if ∃p2 ∈ ∂V1

such that p1 6= p2, {p1, p2} ⊂ A∂(q), and L(p1, q) ∪ L(p2, q) ⊂ U1 [25].

Figure 3.18 illustrates both collapsing and non-collapsing points for a pair of

partially overlapping foregrounds V1 and V2. Here, p1 is a collapsing point because

there exists another point p2 that satisfies all the conditions listed in Definition 3.5:

p1 6= p2, {p1, p2} ⊂ A∂(q), and L(p1, q) ∪ L(p2, q) ⊂ U1. Likewise, p2 is a collapsing

point for the same reason. However, even though there exists a p′2 that satisfies

p′1 6= p′2 and {p′1, p′2} ⊂ A∂(q
′), p′1 is not a collapsing point because p′2 /∈ U1. During

registration, points p1 and p2 will move along L◦(p1, q) and L◦(p2, q) respectively, until

they approach the skeletal point q. On the other hand, point p′2 will approach ∂V2

provided that L◦(p′2, q) enters V2 at most once.

Figure 3.19 illustrates another scenario where both associated points are lo-
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(a) Moving image (b) Fixed image (c) Warped moving image

(d) Moving foreground
distance transform (Eu-
clidean)

(e) X-displacement image (f) Y-displacement image

Figure 3.16. Shape collapse of a rectangle rotated by 30◦ registering to ∅ using time-
varying velocity field transformation with no regularization. Blue in the displacement
images represent negative values while red represents positive values. Observe that
the gradient flow direction is perpendicular to the level sets of the distance transform,
which align neither with the X- nor the Y-axis.
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(a) Moving image (b) Fixed image (c) Warped moving image

(d) Moving foreground
distance transform (Eu-
clidean)

(e) X-displacement image (f) Y-displacement image

Figure 3.17. Shape collapse of a fish shape registering to ∅ using time-varying velocity
field transformation with no regularization. Blue in the displacement images represent
negative values while red represents positive values. Notice that even with a complex
skeleton, the gradient flows in the direction perpendicular to the level sets of the
distance transform (d).
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p1 

p2 

p1' 

p2' 
q 

q’ 

V2 

V1 

Ω 

U1 

U2 

Figure 3.18. Collapsing and non-collapsing points. p1 is a collapsing point because
there exists another point p2 that belongs to the same maximal ball Br(q), and both
p1 and p2 are in the non-overlap region U1. Likewise, p2 is also a collapsing point.
In contrast, p′1 is not a collapsing point because although p′2 belongs to the same
maximal ball Br(q

′), p′2 is not in U1.
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cated in the non-overlapping region U1, but they are non-collapsing points in one

situation and collapsing points in another. Points p1 and p2 in Fig. 3.19(a) are non-

collapsing points, because although both points are located in the non-overlap region

U1, their distance transform lines L(p1, q) and L(p2, q) are not contained in U1. In

contrast, points p′1 and p′2 are collapsing points because lines L(p′1, q
′) and L(p′2, q

′)

(and therefore also points p′1 and p′2) are contained in U1, satisfying all conditions

listed in Definition 3.5.

(a) Non-collapsing points (b) Collapsing points

Figure 3.19. (a) p1 and p2 are not collapsing points because although both points are
contained in the non-overlap region U1, the lines L(p1, q) and L(p2, q) are not. (b) p′1
and p′2 are collapsing points because lines L(p′1, q

′) and L(p′2, q
′) (and therefore also

points p′1 and p′2) are contained in U1.

Finally, it can be seen that the growth in the foreground of the moving image
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(as demonstrated by the hand example), is really a collapsing of the background. By

computing the set of skeletal points of the background q ∈ S(V {
1 ) and the boundary

points of the background p ∈ ∂V {
1 , the set of collapsing points in the non-overlapping

region U2 can be found in a similar way as described in Definition 3.5. Figure 3.20

illustrates a registration example where foreground and background collapse occurs

simultaneously. Non-overlap region U1 is shown in bright gray in (c), whereas non-

overlap region U2 is shown in dark gray. Within U1 and U2, foreground and back-

ground skeletal points about which shape collapse is likely to occur is shown in green

and red, respectively. Figures (d)-(f) illustrate the actual foreground and background

shape collapse after registration, and we can verify that the non-overlap regions ei-

ther collapsed toward the skeletal points or deformed towards the target boundary,

as predicted.

A shape collapse prediction software was developed in C++ that takes both

2D images and 3D volumes and their foreground and (if present) background skeleton

data as inputs. The software determines if a shape boundary is a collapsing boundary

point based on the shape collapse criterion outlined above. The software writes out

foreground and background boundary collapse points and their associated skeletal

points as images. Figures 3.20(c), 4.13(c), 4.17(f,g) and 4.19(f,g) are examples of

predicted collapsing boundary points and their associated skeletal points generated

by this software.
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(a) Moving image (b) Fixed image (c) Foreground (green)
and background (red)
skeletal points in non-
overlap region

(d) Deformed moving im-
age with collapse regions
annotated

(e) Magnified foreground
collapse region (purple)

(f) Magnified background
collapse region (pink)

Figure 3.20. A registration example where foreground and background collapse occurs
simultaneously. Foreground and background skeletal points about which collapse is
likely to occur is shown in (c). Actual shape collapse resulting from registration is
annotated in (d)-(f).



www.manaraa.com

80

3.3.3 Measuring Collapse After Registration

The previous section showed a method for predicting collapse points indepen-

dent of registration algorithm used. In this section, a method for detecting actual

shape collapse caused by registration is outlined. While predicted collapse points

reveal likely locations where shape collapse may occur, actual shape collapse may

occur in different locations at different levels depending on the registration algorithm

used. The traditional method for measuring local expansion and contraction is the

Jacobian [11, 17, 14], but the Jacobian does not differentiate if a neighborhood of

points map to a single contiguous neighborhood of points, or multiple non-contiguous

neighborhoods. Therefore, a new method for measuring the level of dispersion a small

neighborhood of displacements has in order to detect if a shape collapse had occurred.

The underlying idea behind detecting shape collapse is that if the set of points

sampled from a small neighborhood in the deformed image maps to more than one

non-contiguous neighborhoods, it is very likely that a collapse had occurred. In other

words, a neighborhood of contiguous points in the deformed image should originate

from the same general neighborhood of contiguous points in the moving image if no

collapse had occurred. K-means clustering is a popular vector quantization method

which aims to partition N observations into K clusters in which each observation be-

longs to the cluster with the closest mean. In order to measure the level of separation

a neighborhood of points has when mapped back to the moving image coordinate

system, k-means clustering was used as described below.

For the sake of simplicity, collapse detection using k-means clustering for 2D
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case will be explained first (See Fig. 3.21). Let P = {p1, p2, . . . , p9} ⊂ R2 be a set of

points in a 3 × 3 neighborhood in the deformed image coordinate system, centered

around the center point p5. Let S = {u(p1), u(p2), . . . , u(p9)} ⊂ R2 be the set of

displacement vectors for each of the points in P . The k-means clustering seeks to

partition the set S into k partitions, S1, S2, . . . , Sk to minimize the within-cluster

sum of squares (WCSS) (sum of distance functions of each point in the cluster to the

k-centers µ1, µ2, . . . , µk). For k = 2, this is achieved by solving

min
S

2∑

i=1

∑

x∈Si

‖x− µi‖2 (3.19)

where

µi =
1

|Si|
∑

x∈Si

x (3.20)

is the k-center associated to partition Si and i = {1, 2}.

Figure 3.21 shows an example of a collapse at point p5. The arrows represent

the Eulerian displacements in a neighborhood of the pixel p5. An Eulerian displace-

ment pulls back the coordinate in the moving image at the tip of the arrow to the

base of the arrow in the fixed image coordinate system.1 Fig. 3.21(b) shows that two

disjoint regions from the moving image are being pulled back to a single connected

neighborhood in the fixed image. This by definition is a collapse of the moving image

at point p5.

Once the displacements are partitioned into their respective clusters, the dis-

1The direction of the arrow can be confusing because it looks like the displacement moves
in the direction opposite to the arrow. The correct way to interpret this figure is that the
arrows point to the location in the moving image coordinate system that gets pulled back
to the base of the arrow in the fixed image coordinate system.
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(a) (b)

Figure 3.21. (a) A 3 × 3 neighborhood of displacements, centered around p5. (b)
After translating all the neighborhood displacements to the center, perform a k-
means clustering (k = 2) to measure the level of dispersion. The further apart µ1 and
µ2 are, the more likely that a shape collapse occurred in the neighborhood.

tance of the k-centers d = ‖µ2 − µ1‖ is measured to determine whether there was

a shape collapse at this neighborhood of points or not. If the means of the clus-

ters are distant apart, this indicates that the level of dispersion of the displacement

vectors at this location is high which makes this location a sort of a “sink,” where

a region of wide area collapsed into a small area. Figure 3.22(a) and (c) show the

predicted skeletal points of Fig. 3.16(a) and Fig. 3.17(a) being registered to ∅ about

which shape collapse is likely to happen. Using the displacement fields generated by

the time-varying velocity field registration method as shown in Figs. 3.16(e)-(f) and

Figs. 3.17(e)-(f), the k-means clustering method was applied to detect and measure

the actual shape collapse observed as shown in Figs. 3.22(b) and (d) (bright pixels).
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(a) (b)

(c) (d)

Figure 3.22. (a) & (c) Predicted skeletal points about which shape collapse is likely
to occur. (b) & (d) Actual shape collapse observed using k-means clustering (bright
pixels).
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It can be observed from Fig. 3.22(b), the rectangle collapsed along the pre-

dicted skeletal points, with the strongest collapse happening around the center of the

rectangle (brightest pixels) and the weakest collapse happening around the corners

of the rectangle. This can be explained with the radius of the maximal ball asso-

ciated with these locations: the maximal ball has the greatest radius at the center

of the rectangle and the smallest radius around the corners of the rectangle. As for

the fish example in Fig. 3.22(c-d), we can observe that shape collapse regions that

the k-means clustering method shows a result that differs from the predicted skeletal

points, particularly around the bottom two fins. In fact, the shape collapse pattern

resembles what is shown in the distance transform in Fig. 3.17(d) more than the

topological skeleton. This shows that while the prediction of collapse regions can be

made independent of the registration algorithm used, actual shape collapse may differ

from the prediction as demonstrated here.

Next, to verify that the k-means clustering method works both for foreground

and background collapse, it was applied on the “tooth” example shown in Fig. 3.20.

From comparing the predicted collapse region and the detected collapse region, we find

that the method works equally well for foreground and background regions. However,

there is something interesting worth noting here - the k-means clustering method

also detected shape collapse along the target boundary for this particular registration

example. Analysis of the X- and Y-displacement fields verify that the deformation

terminated abruptly at the target boundary, which should not happen with smooth

deformation. In fact, this is another kind of shape collapse that can occur due to the



www.manaraa.com

85

absence of regularization in the registration process. The nature of this type of shape

collapse will be discussed in the next section.

(a) X-displacement (b) Y-displacement

(c) Predicted collapse regions (d) Actual collapse detected
using k-means clustering

Figure 3.23. K-means clustering applied on the “tooth” registration example. The
method works for foreground and background collapse equally well. Notice that
shape collapse is also detected in the target boundary with this particular registration
algorithm.

The 2D k-means clustering method can easily be extended to 3D volumes by

performing the same k = 2 clustering for a 3× 3× 3 neighborhood. The choice of a
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3×3 neighborhood (likewise, 3×3×3 for volumes) showed to be sufficient to measure

the level of dispersion on the neighborhood. Comparison between 3 × 3, 5 × 5 and

7× 7 neighborhoods were made to see if larger neighborhoods made improvements to

the measurement of dispersion as shown in Fig. 3.24. In general, it was found that

the 3× 3 neighborhood was sufficient to measure the level of dispersion, and located

the collapsing points more precisely.

(a) 3× 3 (b) 5× 5 (c) 7× 7

Figure 3.24. K-means clustering results using 3× 3, 5× 5 and 7× 7 neighborhoods.
3 × 3 neighborhood was found to give the most precise location of the collapsing
points.
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CHAPTER 4

EXPERIMENTS

4.1 Evaluation Using Brain MRI Databases

Alignment of brain structures between different subjects is one of the many

commonly employed applications of image registration, useful for mapping physiol-

ogy, functionality and connectivity between subjects or to an atlas. To demonstrate

how the evaluation methods described in this work can be used to evaluate image

registration algorithms on real-life applications, the following experiments were con-

ducted.

4.1.1 Data

The NA0 evaluation database consists of 16 brain MR volumes from 8 male

and 8 female normal right-handed adults, drawn at random from a population of 240

normal subjects. These data sets were selected from a database of healthy individ-

uals from the Human Neuroanatomy and Neuroimaging Laboratory (HNNL) at the

University of Iowa. The demographics of the subjects are shown in Table 4.1. All

16 MR volumes were aligned along the AC-PC points prior to applying the non-rigid

image registration algorithms. To evaluate structural alignment, segmentations of 32

grey matter regions of interest (ROIs) made and reviewed by experts at HNNL. The

original segmentations were conducted in 2D plane, resulting in smooth edges in the

plane of segmentation but rough when viewing oblique slices. Thus the segmentations

were smoothed and verified by reviewers at HNNL. Some of these data sets and their
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segmentations appear in a new atlas by Hannah Damasio that illustrates the normal

neuroanatomy of the human brain, and have been used in several publications about

the morphometric analysis of the normal human brain [21]. Table 4.2 shows each ROI

label and the average volume of the corresponding ROI in the NA0 database. Fig-

ure 4.2 shows an example of an NA0 image data overlaid with its ROI segmentations,

viewed from three orthogonal views.

Table 4.1. Clinical demographic characteristics of the study popula-
tion of NA0.
Label Age Gender Race Ethnic Category Handedness
na01 43 Male White Non Hispanic +95
na02 48 Male White Non Hispanic +95
na03 28 Male White Non Hispanic +85
na04 28 Male Asian Non Hispanic +100
na05 32 Male Unknown Hispanic +100
na06 27 Male White Non Hispanic +80
na07 29 Male White Non Hispanic +65
na08 25 Male White Non Hispanic +100
na09 26 Female White Non Hispanic +100
na10 27 Female Asian Non Hispanic +100
na11 36 Female White Non Hispanic +95
na12 26 Female White Non Hispanic +85
na13 24 Female Unknown Hispanic +100
na14 28 Female White Non Hispanic +80
na15 30 Female Black Non Hispanic +100
na16 41 Female White Non Hispanic +100

4.1.2 Methods

Seven image registration algorithms were used to perform pairwise registra-

tions of the NA0 dataset, and their names are as follows: SLE, SICLE, SyN, Diffeo-

morphic Demons, Log Symmetric Demons, elastix and NiftyReg. Default parameters

for each registration software were used, since optimizing registration performance of
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Figure 4.1. The segmentations available in NIREP NA0 (Detail of figure 2 of chapter
2, H. Damasio, “Human Brain Anatomy in Computerized Images,” 2nd ed., 2004,
Oxford University Press, In press). Shown are typical segmentations available to
this project and include: Cerebrum: The cerebellum, hypothalamus, and brain stem
are not segmented; Left and right hemispheres: Frontal Lobe: Frontal Pole, Supe-
rior Frontal Gyrus, Middle Frontal Gyrus, Inferior Frontal Gyrus, Orbital Frontal
Gyrus, Precentral Gyrus; Parietal Lobe: Postcentral Gyrus, Superior Parietal Lob-
ule, Inferior Parietal Lobule; Temporal Lobe: Temporal Pole, Superior Temporal
Gyrus (including Heschl’s Gyrus (Primary Auditory Cortex) and Planum Tempo-
rale), Infero-Temporal Region, Parahippocampal Gyrus (including the Amygdala and
Hippocampus); Occipital Lobe; Cingulate Gyrus; Insula.
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(a)

(b)

(c)

Figure 4.2. An MR data set from NA0 database. Shown are the T1 image (left
column), the segmentation image associated with the na01 data set (middle column),
and the segmentation overlapped on the T1 image (right column) viewed in (a) trans-
verse, (b) coronal and (c) sagittal slices.



www.manaraa.com

91

Table 4.2. Regions of Interest (ROI) in the NA0 evaluation database. The
average volume for each ROI is reported in units of voxels.

ave ave
ROI volume ROI volume

×105 ×105

1 L occipital lobe 0.87 2 R occipital lobe 0.93
3 L cingulate gyrus 0.42 4 R cingulate gyrus 0.45
5 L insula gyrus 0.22 6 R insula gyrus 0.21
7 L temporal pole 0.28 8 R temporal pole 0.31
9 L superior temporal 0.45 10 R superior temporal 0.39

gyrus gyrus
11 L infero temporal 1.0 12 R infero temporal 1.0

region region
13 L parahippocampal 0.35 14 R parahippocampal 0.34

gyrus gyrus
15 L frontal pole 0.17 16 R frontal pole 0.18
17 L superior frontal 0.79 18 R superior frontal 0.78

gyrus gyrus
19 L middle frontal 0.67 20 R middle frontal 0.64

gyrus gyrus
21 L inferior gyrus 0.30 22 R inferior gyrus 0.32
23 L orbital frontal 0.46 24 R orbital frontal 0.4

gyrus gyrus
25 L precentral gyrus 0.62 26 R precentral gyrus 0.62
27 L superior parietal 0.64 28 R superior parietal 0.60

lobule lobule
29 L inferior parietal 0.78 30 R inferior parietal 0.82

lobule lobule
31 L postcentral gyrus 0.45 32 R postcentral gyrus 0.42

each algorithm is not within the scope of this work (therefore the results reported in

this work is not representative of the full potential of the registration software used).

All pairwise combinations of 16 brain MR images resulted in 240 pairwise registra-

tions for each algorithm. All registrations were performed on a Intel® Xeon® X5670

@ 2.93GHz (24 cores) with 47 GB of memory.

Evaluations of image registration performance were carried out using the fol-

lowing criteria: 1) Target Overlap, 2) Mean Overlap, 3) Union Overlap, 4) Volume

Similarity, 5) False Positive, and 6) False Negative.
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4.1.3 Results and Discussion

Evaluation of overlap measures were conducted using Target Overlap, Mean

Overlap, Union Overlap, Volume Similarity, False Positive, and False Negative [65].

The overlap measures were computed for each individual regions of interest listed in

Table 4.2, and also for all regions. Table 4.3 shows the Target Overlap, Mean Overlap,

and Union Overlap measures of all regions for all 240 pairwise registrations for each

registration algorithm. The overlap measures before registration was included in the

first column to illustrate how much improvement there is after registration. Overall,

it can be seen that NiftyReg and Diffeomorphic Demons are the best performing

algorithms.

4.2 Shape Collapse Experiments

In order to study the effect of shape collapse in greedy registration algorithms,

time-varying velocity field registration algorithm provided by ANTs [6, 5], which

is based on the LDDMM algorithm [8]. The choice of this algorithm is based on

the popularity of this group of diffeomorphic registration algorithms today, and how

well they performed in evaluation works such as the EMPIRE10 challenge [51, 52]

and Klein’s evaluation of brain MRI registration algorithms [41, 42]. While these

diffeomorphic algorithms boast of good registration performance, it will be shown in

this work that these algorithms also suffer from the shape collapse problem due to

their greedy nature. Unless specified otherwise, all of the registrations in this chapter

were generated using the ANTs registration suite using the time-varying velocity field

method with numberOfT imeIndices set to 4, updateF ieldV arianceInV oxelSpace
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set to 0 and the remaining variance terms set to 0. Tools for predicting and detecting

shape collapse points were implemented in C++ and MATLAB.

4.2.1 3D Binary Shape Collapse: 3D Objects Deformed to Their Skeletons

The shape collapse of 2D images to the empty set has been explored in the

previous sections and has shown that the greedy registration algorithm’s cost gradi-

ent flows along the fastest area-decreasing path (which is the path perpendicular to

the level sets of the distance transform), ultimately collapsing to the skeleton of the

shape. Similarly, we repeat the same experiment with simple 3D shapes to see if the

same shape collapse behavior can be observed. Figure 4.10 illustrates a simple 3D

example of a cylinder registering to the empty set. Detailed view of the displacement

fields generated is shown in Fig. 4.11. Using the same k-means clustering method

to measure the level of shape collapse of the displacement in 3D space, and gener-

ating a volume using the distance of the means for each voxel location, we obtain

Fig. 4.10(d). Notice how the detected shape collapse region resembles the skeleton of

the cylinder. Taking a detailed look at the Maurer distance transform of the cylinder

(Figs. 4.11(a)-(c)) and comparing it to the displacement field generated by the regis-

tration algorithm (Figs. 4.11(d)-(l)), we observe that the registration process caused

the cylinder to deform along the path perpendicular to the level sets of the distance

transform, ultimately terminating at the skeleton of the cylinder. It is interesting to

note that the displacements to the top and bottom of the “ears” of the skeleton (i.e.,

the cone-shaped skeleton) are purely in the Z-axis direction.

Likewise, the same experiment was carried out using a more complex shape
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(a) Template object (b) Deformed template

(c) Template object skeleton (d) Detected shape collapse
points

Figure 4.10. Shape collapse resulting from registering a cylinder to the empty set. The
detected shape collapse points using k-means clustering reveals the cylinder collapsed
into its skeleton.
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(a) Distance trans-
form (axial)

(b) Distance trans-
form (sagittal)

(c) Distance trans-
form (coronal)

(d) X-displacement
(axial)

(e) X-displacement
(sagittal)

(f) X-displacement
(coronal)

(g) Y-displacement
(axial)

(h) Y-displacement
(sagittal)

(i) Y-displacement
(coronal)

(j) Z-displacement
(axial)

(k) Z-displacement
(sagittal)

(l) Z-displacement
(coronal)

Figure 4.11. Orthogonal views of the Maurer distance transform of the cylinder and
displacement fields. The displacement fields reveal that the cylinder followed the
path perpendicular to the level sets of the distance transform and collapsed into the
skeleton.
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like the 3D “tooth” shown in Fig. 4.12.

(a) Template object (b) Deformed Template

(c) Template object skeleton (d) Detected shape collapse
points

Figure 4.12. Shape collapse of a 3D tooth registering to the empty set. The detected
shape collapse points using k-means clustering reveals the shape collapsing into its
skeleton.
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4.2.2 One-sided Binary Shape Collapse: 2D Fish Example

Next, experiments were carried out with image pairs were the target image is

non-zero. Figure 4.13 illustrates an example of a big fish being registered to a small

fish. Fig. 4.13(c) shows the non-overlap regions where blue indicates non-overlap re-

gion U1, green indicates non-overlap region U2, red indicates foreground skeleton in

U1, purple indicates background skeleton in U2, cyan indicates collapsing foreground

boundary, and orange indicates collapsing background boundary. Figs. 4.13(d) and

(e) show the X- and Y-displacement fields generated by the registration algorithm,

and Fig. 4.13(f) shows the detected shape collapse points using k-means clustering.

Notice that apart from the predicted shape collapse about the foreground and back-

ground skeletons in the non-overlap region, we also see shape collapse happening

around the boundary of the target image. As mentioned in the previous section, this

is due to the fact that this particular registration algorithm does not smooth out the

transformation (i.e., the displacement field does not taper off gradually around the

boundary, but terminates abruptly). A way to interpret this phenomenon is that a

region in the template image that had non-zero area collapsed into a set of zero mea-

sure around the boundary of the target image, while there was zero deformation in the

overlapping region W of the image pair. In other words, instead of smoothly rescaling

to the target image, the non-overlap region “crashes into” the target boundary as it

deforms.

To aid understanding how the registration algorithm deforms the template

image during registration, a segmentation of the fins of the fish was made as shown in
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(a) Template image (b) Target image (c) Non-overlap regions

(d) X-displacement image (e) Y-displacement image (f) Detected collapse
points using k-means
clustering

Figure 4.13. Shape collapse example of big fish being registered to a small fish. (c)
Blue: U1; Green: U2; Red: Foreground skeleton in U1; Purple: Background skele-
ton in U2; Cyan: Collapsing foreground boundary; Orange: Collapsing background
boundary.
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Fig. 4.14(a). Then the progressive change of the template image shape at each itera-

tion of the registration process is shown in Fig. 4.14. As it can be observed from the

mid-stage deformed images, there is no deformation happening in the overlapping re-

gion of the template and target images, as the segmentation in this region is preserved

throughout the registration process. As it was suspected that the absence of regular-

ization allowed the deformation to have abrupt discontinuities, the registration was re-

peated with various regularization values (i.e., updateF ieldV arianceInV oxelSpace).

4.2.3 Mitigating Binary Shape Collapse: 2D SyN Registration

Figure 4.15 shows the registration results for different regularization factors.

As it can be seen from the displacement and k-means images, higher regularization

factors do indeed smooth out the deformation field, reducing the effect of shape

collapse both at the target boundary and the non-overlap region. This is an expected

behavior, since smoothing out the deformation with regularization slows down the

rate of area-decreasing flow. However, it can also be seen that higher regularization

factors limit the degree of freedom the deformation can have and results in registration

errors as shown by the squared difference images.

The full ramification of the shape collapse problem can be observed by the

alignment of the segmentations (as shown in Fig. 4.16) using the transformation gen-

erated by the registration algorithm registering the two binary images. Although the

similarity cost of the registered binary images may have been minimized by the reg-

istration algorithm, the pointwise correspondence within the iso-intensity region may

not be the desired result. Figs. 4.16(a) and (b) illustrate how the fins of the big and
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iter = 0 iter = 10 iter = 30 iter = 60

iter = 80 iter = 100 iter = 150 iter = 200

iter = 250 iter = 300 iter = 400 iter = 600

iter = 800 iter = 1000 iter = 1300 iter = 1710

Figure 4.14. Deformed template image mask at each iteration during registration.
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σ2 = 8

σ2 = 32

σ2 = 64

σ2 = 100

Figure 4.15. Squared difference after registration (first column), X- & Y-
displacements (second and third column), and detected collapse regions (last column)
for different regularization values (σ2).
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small fish can be segmented, respectively. The desired registration result is to deform

image (a) to (b), aligning the fins and torso. However, the deformed template image

mask shown in (c) shows that instead of matching the fins, the registration algorithm

instead collapsed the non-overlap regions to match the target shape. Consequently,

we see that the purple fin present in (a) is missing in (c) due to complete collapse, and

only small remnants of the cyan, orange, green and blue fins remain in the deformed

image. What this tells us is that had the images been from real anatomy instead of

fish phantoms, we may encounter situations where a structure with non-zero volume

may map to a zero-measure strip of skeleton, which is an undesirable result.

(a) Template mask (b) Target mask (c) Deformed template
mask

Figure 4.16. Segmentation of the fins of the fish shows that despite zero sum of
squared difference error after registration, the internal correspondence may not be
the desired result.
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4.2.4 3D Binary Shape Collapse: Flat Cylinder Registered to a Round Cylinder

The next example showing the shape collapse of a flat-cylinder (i.e., a cylin-

der with its two sides flattened) registering to a cylinder may illustrate a possible

scenario in which a flattened vessel registers to a cylindrical vessel by shape collapse.

Figures 4.17(a) and (b) are 3D renderings of the flat-cylinder and cylinder to be

registered. Both shapes have the same height and width on the short axis. The

3D rendering in Fig. 4.17(c) shows the region of non-overlap, which looks like the

flat-cylinder with a hole the size of the target cylinder drilled through the center.

Because the region of non-overlap only consists of U1 and U2 = ∅, we can predict

that only shape collapse in the foreground will occur, as shown in Figs. 4.17(d)-(g).

The gold region in Fig. 4.17(g) shows the boundary points in the template volume

that is likely to collapse, and the gold region in Fig. 4.17(f) shows the skeletal points

about which shape collapse is expected to occur. In this example, the non-overlap

region contains both collapsing and non-collapsing boundary points. The boundary

points associated with the ear-shaped skeletal points (as shown in Fig. 4.17(f)) in the

non-overlap region are likely to collapse during registration whereas boundary points

associated with the skeletal points in the overlap region are likely to deform towards

the boundary of the cylinder. The deformed template volume in the mid-stages of

the registration process shown in Fig. 4.17(h) confirms the prediction with the flat-

cylinder collapsing around the “ears” of the skeleton. The arrows in Fig. 4.17(i) show

the direction of the gradient flow during registration.

Using the k-means clustering method, the actual shape collapse points result-
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(a) Template volume (b) Target volume (c) Region of non-overlap

(d) Skeletal points of
template foreground

(e) This panel is blank. (f) Skeletal points of tem-
plate volume in non-
overlap region

Collapsing forces 

        x-axis forces 

        y-axis forces 

        z-axis forces 

x 

y 

z 

(g) Gold: Boundary
points of template fore-
ground in non-overlap
region

(h) Deformed template.
Notice the one-sided col-
lapse along the side of the
deformed template

(i) Blue: Collapsed tem-
plate object, Burgundy:
Foreground skeleton in
non-overlap region

Figure 4.17. Shape collapse example of a flat-cylinder registering to a round cylinder
of same height and short-axis width. Because the region of non-overlap contains only
U1 and U2 = ∅, only foreground collapse occurs. The deformed flat cylinder in mid-
stage registration shown in (h) shows two-sided shape collapse around the “ears” of
the skeleton and the one-sided collapse along the sides.
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ing from the registration algorithm are shown in Fig. 4.18. Similarly to the big fish to

small fish registration example, not only do we observe the two-sided shape collapse

in the predicted region, but we also see one-sided shape collapse around the boundary

of the target shape.
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(a) Axial (b) Sagittal

(c) 3D rendering (d) Coronal

Figure 4.18. Orthogonal views and 3D rendering of the detected shape collapse regions
of the flat-cylinder registering to a cylinder using k-means clustering. Notice the one-
sided shape collapse along the wall of the cylinder.
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4.2.5 3D Foreground and Background Binary Shape Collapse: Sliding Appendage

The next example demonstrates both foreground and background shape col-

lapse in 3D space. Extending the 2D tooth example in Fig. 3.20 into 3D, we have the

template and target objects as shown in Figs. 4.19(a) and (b). The non-overlap region

shown in Fig. 4.19(c) contains both U1 and U2, which means that both foreground and

background collapse is likely to occur. The skeletal points illustrated in Fig. 4.19(f)

show where foreground and background shape collapse is going to take place. Notice

that the boundaries highlighted in Fig. 4.19(g) collapses into skeletal points that are

2D planes, which has co-dimension one with the 3D volume. Fig. 4.19(i) illustrates

the gradient flow direction taken to collapse the foreground and the background.

Figure 4.20 shows the orthogonal views and the 3D rendering of the shape

collapse image generated using the k-means clustering method. We can confirm that

the registration algorithm generated displacements that are highly dispersed around

the skeletal region of the collapse region, as predicted.
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(a) Template object (b) Target object (c) Region of non-overlap

(d) Skeletal points of
template foreground

(e) Skeletal points of tem-
plate background

(f) Skeletal points of
template object in non-
overlap region

Collapsing forces 

        x-axis forces 

        y-axis forces 

        z-axis forces 

x 

y 

z 

(g) Gold: Boundary
points of template fore-
ground, Silver: Boundary
points of template back-
ground in non-overlap
region

(h) Deformed template
object

(i) Blue: Collapsed tem-
plate object, Burgundy:
Foreground skeleton,
Green: Background
skeleton in non-overlap
region

Figure 4.19. 3D foreground and background collapse using time-varying velocity field
transformation with no regularization. Notice that the foreground collapses into the
skeleton and the background encroaches into the foreground along the skeleton.
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(a) Axial (b) Sagittal

(c) 3D rendering (d) Coronal

Figure 4.20. Orthogonal views and 3D rendering of the detected shape collapse regions
of the teeth registration using k-means clustering.
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4.2.6 Mitigating Binary Shape Collapse: 3D SyN Registration

Figure 4.21 shows how different levels of regularization affects the level of shape

collapse in 3D. In each column, the template objects (flat-cylinder and tooth) were

deformed using transformations generated by registration with various smoothing

variances. The gradual diminishing of shape collapse levels can be observed visually

in each column as regularization levels are increased. A quantitative analysis of the

level of shape collapse at different regularization levels can be made by taking the

mean summation of Jacobian of transformation at points in the deformed image

coordinate system that are mapped to collapsing boundary points in the template

image coordinate system. Figure 4.22 shows the plot of sum of Jacobian at collapsing

boundary points versus regularization levels.

σ2 = 0 σ2 = 1 σ2 = 2 σ2 = 4 σ2 = 8

Figure 4.21. Demonstration of how different regularization parameters affect the level
of collapse.
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(a) Flat-cylinder to round cylinder
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Figure 4.22. Plot of sum of Jacobian values at collapsing foreground and background
boundaries at different regularization levels.
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4.2.7 3D Shape Collapse: MRI Brain Images

To demonstrate that the shape collapse problem is a real problem that can be

found in real life situations, brain MR images from the NA1 database were registered

using the ANTs registration package. Real brain data is far more complex than the

simple shape examples that were used in earlier sections, added on to the fact that

we’re now dealing with grayscale image, not binary images. The added complexity

made prediction of the collapse region very difficult, but the collapse detection mecha-

nism has worked well. Time-varying velocity field transformation model of the ANTs

package was used for all registrations.

NA1 consists of 18 brain MR volumes from 9 male and 9 female normal right-

handed adults, also from the Human Neuroanatomy and Neuroimaging Laboratory.

The demographics of the subjects are shown in Table 4.3. All 18 MR volumes

were aligned along the AC-PC points prior to applying the non-rigid image regis-

tration algorithms. Segmentations of 57 grey matter ROIs acquired from the output

of FreeSurfer using the Desikan-Killiany atlas and edited by Joel Bruss to correct

mistakes will be used to evaluate registration performance.

The study population was a consecutive series of participants recruited from:

(1) The University Hospital setting, recruited through local advertising; (2) Local

communities in Iowa, recruited through newspaper advertising (and with special tar-

geting of minority populations); (3) A dataset of approximately 80 normal control

subjects who agree to be contacted for future studies under IRB# 2000303002 - Mech-

anisms of Perimetric Variability - Michael Wall, PI. and (4) College students at the
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Table 4.3. Clinical demographic characteristics of the study
population of NA1.
Label Age Gender Race Handedness
3065 35 Male White +100
3362 23 Male White N/A
3368 26 Male White N/A
3402 23 Male Hispanic +100
3403 32 Male African Am. +95
3407 28 Female White +100
3413 26 Female White +100
3414 31 Male African Am. +90
3424 24 Female White +100
3425 23 Male White +95
3463 24 Male White +90
3468 36 Female White +100
3474 30 Female White +100
3479 29 Female White +80
3481 39 Male White +95
3489 56 Female White +100
3491 27 Female Asian/Pacific Islander +100
3493 22 Female African Am. +95

University of Iowa, through local advertising; (5) Referral from colleague - Patients

of Michael Wall, MD. Dept. of Neurology, who is a co-investigator on this project;

(6) Other-Word of mouth. The inclusion/exclusion criteria for MRI included in this

database are: (1) Age > 18years; (2) No history of developmental, neurological or

psychiatric disease; (3) Normal visual acuity (can read text in a book at arms length

without glasses); (4) No history of medical disease or medication which might affect

cerebral blood flow; (5) No factor which contraindicates MR scanning, including pace-

maker, pacemaker wires, implanted cardiac defibrillator, Neurostimulator, aneurysm

clip, or any electronic implant, inner ear surgery, weight over 136 kg (300lb), metal

embedded in soft tissue or in the eye, prosthetic eye, or claustrophobics; (6) Not preg-

nant; (7) Not non-English speaker; (8) Do not smoke tobacco; (9) No non-removable

body piercing; (10) No neurological conditions of any of the following: stroke, severe
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head trauma (motor vehicle accident, loss of consciousness, alteration of consciousness

or memory loss), tumor, meningitis, encephalitis, seizure disorder, severe migraine,

dementia, epilepsy, any other neurological condition which may contribute to cogni-

tive impairment; (11) No developmental disabilities, including dyslexia and a learning

disability; (12) No medical conditions of the following: severe hypertension, severe

thyroid dysfunction, severe anemia and/or sickle cell disease, renal failure, heart dis-

ease, diabetes; (13) Not use anti-depressants; (14) No history of depression; (15) No

regular use of antihistamine; (16) Not an employee of the Neurology Department or

a medical students rotating in Neurology; (17) No conditions of any of the following:

employee of the PI or employee of a research team member, individual supervised

by PI or supervised by member of research team, individual subordinate to the PI

or subordinate to any member of the research team, student or trainee under the

direction of the PI or under the direction of a member of the research team; (18) Not

incompetent or have limited decision-making capacity on initial enrollment into the

study; (19) No change of capacity to consent over the course of the study; (20) Not

prisoner.

Table 4.4 associates a label with each ROI in NA1 database.
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Table 4.4. Regions of Interest (ROI) in the NA1 evaluation database.
ROI ROI ROI ROI

number name number name
0 Background 1 Still unassigned regions
2 Left Cuneus 3 Right Cuneus
4 Left Lateral Occipital Gyrus 5 Right Lateral Occipital Gyrus
6 Left Lingual Gyrus 7 Right Lingual Gyrus
8 Left Calcarine 9 Right Calcarine

(pericalcarine) Region (pericalcarine) Region
10 Left Cingulate Gyrus 11 Right Cingulate Gyrus
12 Left Insular Cortex 13 Right Insular Cortex
14 Left Temporal Pole 15 Right Temporal Pole
16 Left Superior Temporal Gyrus 17 Right Superior Temporal Gyrus
18 Left Heschl’s Gyrus 19 Right Heschl’s Gyrus
20 Left Middle Temporal Gyrus 21 Right Middle Temporal Gyrus
22 Left Inferior Temporal Gyrus 23 Right Inferior Temporal Gyrus
24 Left Fusiform Gyrus 25 Right Fusiform Gyrus
26 Left Entorhinal Cortex 27 Right Entorhinal Cortex
28 Left Parahippocampal Gyrus 29 Right Parahippocampal Gyrus
30 Left Frontal Pole 31 Right Frontal Pole
32 Left Superior Frontal Gyrus 33 Right Superior Frontal Gyrus
34 Left Middle Frontal Gyrus 35 Right Middle Frontal Gyrus
36 Left Inferior Frontal Gyrus 37 Right Inferior Frontal Gyrus
38 Left Orbital Gyri 39 Right Orbital Gyri
40 Left Paracentral Lobule 41 Right Paracentral Lobule
42 Left Precentral Gyrus 43 Right Precentral Gyrus
44 Left Postcentral Gyrus 45 Right Postcentral Gyrus
46 Left Superior Parietal Lobule 47 Right Superior Parietal Lobule
48 Left Inferior Parietal Lobule 49 Right Inferior Parietal Lobule
50 Left Precuneus 51 Right Precuneus
52 Caudate. 53 Putamen.
54 Globus Pallidus. 55 Nucleus Accumbens
56 Thalamus 57 Lateral Ventricles
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4.2.7.1 Collapse Example 1: Collapse of the Thalamus

Figure 4.23 shows the template (patient ID: 3065) and target (patient ID:

3424) brain MR images before registration. The columns show the axial, sagittal and

coronal views of the template, target, and difference images. Green in the difference

image indicates regions where only the template contains image data; red indicates

regions where only the target contains image data; and yellow indicates regions where

both the template and target contain image data. The original 3065 and 3424 images

had the brain located too close to the superior end of the image, causing the trans-

formation to be affected by the boundary condition (this will be discussed in detail

in Section 4.2.8). So, both images were shifted downward towards the center of the

image before registration.

Figure 4.24 shows the orthogonal views of the deformed segmentation masks

after registration, and also the collapse magnitude image. In both the template and

target masks, the thalami at the center (dark orange) can clearly be seen. However,

after registration, as indicated by the red arrows in the third row, we can see that the

thalamus has collapsed. The collapse magnitude image in the fourth row confirms

the collapse, with bright regions in the center indicate regions of large collapse. Fig-

ure 4.25 3D rendering of the template thalamus, target thalamus, and the collapsed

template thalamus after registration. Also, a 3D rendering (from three different an-

gles) of the bright region of the collapse magnitude image is shown in Fig. 4.26.
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Figure 4.23. Template (patient ID: 3065) and target (patient ID: 3424) image pair
and their difference before registration. The first two rows show the three orthogonal
views of the template and target data. The last row shows the difference of the
template and target, with green indicating regions where only the template contains
image data; red indicating regions where only the target contains image data; and
yellow indicating regions where both the template and target contain image data.
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Figure 4.24. Orthogonal views of the template, target, and deformed template mask
after registration. The images in the last row shows the collapse magnitude image,
where bright areas indicate areas of large collapse. Collapse of the thalamus (red
arrows in the third row) is observed after image registration.
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Figure 4.25. A 3D rendering of the template thalamus, target thalamus, and the
collapsed template thalamus after registration. Notice how the template thalamus
collapsed and does not resemble the shape of the template thalamus.

Figure 4.26. Three different 3D rendering from different angles of the collapse magni-
tude image in the thalamus region. This is not the rendering of the actual collapsed
thalamus (as shown in Fig. 4.25, but instead, the rendering of the regions of greatest
collapse magnitude.
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4.2.7.2 Collapse Example 2: Collapse of the Cortex

It was also observed that shape collapse occurred in the cortical region. Fig-

ure 4.27 shows the same brain MR data of patient 3065 and 3424 as shown in Fig. 4.23,

except that it highlights the orthogonal plane where the mismatch between the cor-

tical regions are large.

Figure 4.28 shows the orthogonal views of the template, target and deformed

template segmentation masks, and the collapse magnitude image after registration.

The red arrows in the third row indicate where shape collapse likely has occurred.

Compared to the collapse of the thalamus shown in the previous example, the collapse

of the cortex is not immediately obvious. However, the bright highlights near this

region in the collapse magnitude image (particularly visible in the sagittal and coronal

views) suggest that a collapse has occurred. This serves at explanation as to how the

white cortical region flowed into (or, collapsed into) the brown cortical region.

This example demonstrates that it is very difficult to detect shape collapse by

analyzing the deformed image or the segmentation mask. The collapse magnitude

image serves as an indicator to highlight regions where shape collapse may have

occurred. While not all bright points in the collapse magnitude image indicate shape

collapse, but areas with high collapse magnitude strongly suggest that a shape collapse

may have occurred and demand further analysis. There is not yet a clear-cut way

to determine whether a collapse of certain magnitude is a result of an actual shape

collapse or just large deformation. Simple thresholding of the collapse magnitude

image does not clearly isolate real collapsing points from the false ones. At this
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Figure 4.27. Template (patient ID: 3065) and target (patient ID: 3424) image pair
and their difference before registration. These are the same exact brain MR images
as shown in Fig. 4.23, except that the orthogonal views show where the mismatch
between the cortical regions are large.
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Figure 4.28. Orthogonal views of the template, target, and deformed template mask
after registration. The images in the last row shows the collapse magnitude image,
where bright areas indicate areas of large collapse. Collapse of the cortical region (red
arrows in the third row) is observed after image registration.
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point, only visual analysis of suspected regions is the recommended approach, but

a more formal definition of collapsing points based on collapse magnitude is left for

future work.

4.2.8 Boundary Conditions and Shape Collapse

In the previous section, it was noted that the original images for patient 3065

and 3424 had to be shifted downward to be centered for registration. In this section,

what happens to the shape collapse if the images are not shifted (i.e., when the

deformation occurs near the image boundary). Figure 4.29 shows the uncentered

version of the images in Fig. 4.23. It is clear from the sagittal and coronal views that

the brain is located near the superior boundary.

Figure 4.30 shows the collapse magnitude image after registration. Notice the

bright highlights near the superior boundary. The shape of the collapse magnitude

near the boundary suggests that objects are being “squished” near the image bound-

ary. Figure 4.31 shows the 3D representation of the collapse magnitude images of

the same registration pair generated by registering (a) uncentered; and (b) centered

images. In Fig. 4.31(a), the collapse magnitude image shows deformations happening

within the brain boundary. However in Fig. 4.31(b), there is large collapse magni-

tude observed near the superior boundary, which flattens out as it gets closer to the

boundary. The possible explanation of this phenomenon is that the transformation is

parametrized in such a way that zero deformation is allowed near the image boundary.

Thus, all deformations between the image boundary and the brain are concentrated

near the upper boundary of the brain, creating the “squished” effect. If the registra-
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Figure 4.29. Template (patient ID: 3065) and target (patient ID: 3424) image pair
and their difference before registration. These are the same exact brain MR images
as shown in Fig. 4.23, except that the images are not centered. As it can be seen
from the sagittal and coronal views, the brain is located near the superior boundary.
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tion algorithm does not suffer from this boundary condition (i.e., deformations are

allowed at the boundary), this kind of squishing would not occur.

Axial Sagittal Coronal

Figure 4.30. Orthogonal view near the superior boundary of the collapse magnitude
image after registration. Notice the bright highlights near the boundary of the image,
which means that objects are being “squished” near the boundary.
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(a) (b)

Figure 4.31. Collapse magnitude images of the same registration pair generated by
registering (a) uncentered images; and (b) centered images.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

The goal of this thesis was to create an evaluation framework for evaluating

the performance of nonrigid image registration algorithms. This thesis is a product

of the nonrigid image registration evaluation project (NIREP) [18]. This thesis gives

guidance to which image registration algorithms work best for certain registration

problems and why. It also provides insights as to how image registration algorithm

may perform on other types image data sets that were not evaluated in this text.

A major challenge of evaluating image registration performance is the lack

of a “Gold Standard,” i.e., the true correspondence between two arbitrary images is

unknown. A second major challenge is there are many image registration problems

in which there may be many different correspondence maps that give the same result,

i.e., there is no unique correspondence map. An example of this occurs for generating

an automatic segmentation of a target image using an atlas. In this task, the atlas

is registered to a target image and then the estimated transformation is used to map

the atlas segmentation to the target image. In this case, there are an infinite number

of transformations that can produce the same automatic segmentation.

The approach taken in this thesis to overcome these problems and evaluate im-

age registration performance was to (1) break each image registration algorithm into

its basic components (transformation model, matching criteria, and regularization)

in order to isolate and understand how each component affects registration perfor-
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mance; (2) compare image registration algorithms on common evaluation databases;

and (3) evaluate image registration algorithm performance using many evaluation

tests. The advantage of using multiple evaluation tests is that one can characterize

different aspects of image registration algorithm performance. Characterizing reg-

istration algorithm performance can be used to predict performance of a particular

image registration algorithm on similar types of images and image registration prob-

lems.

5.1 Image Registration Algorithm Component Analysis

One of the contributions of this thesis is to examine image registration algo-

rithm performance at the component level. An image registration algorithm can be

decomposed into four basic components: transformation model, similarity cost func-

tion, regularization cost function and optimization. This thesis discussed the impact

that the first three of these components have on image registration performance. The

impact that optimization approaches have on image registration performance was

not addressed in this thesis. Some of the reasons why the optimization component

was excluded from this work were: (1) changing the optimization method can reduce

computation time but does not necessarily provide better correspondence; and (2)

reimplementing a particular image registration algorithm multiple times with differ-

ent optimization methods requires a lot of programming effort and was hence beyond

the scope of this project.

This thesis catalogs many of the common small and large deformation image

registration transformation models. The advantages, limitations and degrees of free-
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dom of each transformation model were discussed. In general, the degrees of freedom

is a good way to characterize the complexity of a transformation model with respect

to computation needs, storage needs, and flexibility to represent complex shape de-

formations. Issues related to transformation models comprised of basis functions with

infinite support vs. local support were discussed. This thesis catalogs many of the

common image registration similarity cost functions and regularization cost functions.

In each case, the pros and cons of each cost function were discussed. The importance

of regularization in an image registration algorithm was demonstrated first hand in

this thesis when it was used to mitigate shape collapse.

5.2 Image Registration Algorithm Evaluation

One of the contributions of this thesis is to catalog the benefits and limitations

of many of the most commonly used image registration evaluation approaches. For

example, one of the best approaches to evaluate image registration accuracy is to mea-

sure the distance between a transformed landmark and it’s corresponding landmark.

Unfortunately, corresponding landmark evaluation has many limitations including:

(1) it only measures the accuracy of a transformation at the landmarks; (2) land-

marking is time consuming; (3) there is error in selecting landmarks; (4) landmarking

often has to be performed by trained professionals such as doctors; and (5) not ev-

ery object of interest has landmarks (e.g., a smooth surface). Another example is

that inverse consistency is a necessary condition for good correspondence but it is

not sufficient. For example, Section 3.1.8 demonstrated that although the SyN image

registration algorithm had zero inverse consistency error by construction, it still had
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midpoint landmark error, i.e., correspondence error.

Evaluation tests provide a means for quantifying image registration perfor-

mance and allows us to rank image registration algorithms based on how well they

perform specific tasks. This thesis did not attempt to analyze every single existing

image registration algorithm with every single evaluation approach, but rather pro-

vided examples and guidance of how image registration algorithms can be evaluated

and ranked. To this end, the performance of many commonly used image registration

algorithms were evaluated and ranked based on different evaluation criteria.

Finally, one incremental contribution of this thesis was to demonstrate how

existing evaluation methods can be applied in the midpoint coordinate system to

evaluate some symmetric image registration algorithms such as the SyN registration

algorithm.

5.3 Detecting, Visualizing, and Mitigating Shape Collapse

A major contribution of this thesis was to develop tools to evaluate and vi-

sualize 2D and 3D image registration shape collapse. This thesis demonstrates that

many current diffeomorphic image registration algorithms suffer from the collapse

problem. The collapse problem occurs when a set with some finite area/volume col-

lapses to a set of near zero measure. We demonstrated that both the foreground and

the background of an image can collapse. The growth problem can be considered a

dual problem of the collapse problem. A growth occurs when a region of the template

image expands to fill in a region in the target image that is missing in the template

image (See Fig. 3.8).
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This thesis provides the first visualizations of the collapse problem in 3D for

simple shapes and real human brain MR images. To do this, we extended tools from

2D to 3D for predicting and visualizing where shape collapse may occur based on the

overlap of binary template and target images. The extension from 2D to 3D was not

trivial. Generating the skeleton of an object in 2D is an easier problem than generating

a skeleton of a 3D object. In addition, most skeletonization algorithms only generate

skeletons of the foreground object but our application requires skeletonization of both

the foreground and background. Skeletonizing the image background is different than

skeletonizing the foreground since the boundary of the image is not considered part

of the background object. To overcome these issuses, we worked with Dakai Jin to

modify his novel skeletonization method [38] to skeletonize both the foreground and

background of a 3D binary image. Further, we developed software to identify the

surface collapse points and visualize them.

The tools developed to visualize predicted shape collapse and actual shape

collapse lead to the discovery of one-sided shape collapse. This thesis is the first to

characterize one-sided shape collapse and it provides the first 2D and 3D visualizations

of one-sided collapse. This discovery also required us to refine our notion of shape

collapse as either one-sided or two-sided.

This thesis provides the first experiments that demonstrate how adjusting

image registration parameters can mitigate the collapse problem to some extent. In

these experiments, we showed how adjusting the appropriate parameters in the SyN

algorithm could reduce shape collapse. However, the cost for mitigating the collapse
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was that the SyN algorithm produced worse registration with respect to foreground

overlap.

5.4 Future Work

It is our hope that the evaluation framework presented in this thesis will be

continued to be expanded upon in the future. We also hope that the insights gained by

understanding the benefits, drawbacks and limitations of the individual components

that make up an image registration algorithm will help produce the next generation

of improved image registration algorithms.
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ing large deformation metric mappings via geodesic flows of diffeomorphisms.
International Journal of Computer Vision, 61(2):139–157, 2005.

[9] P. J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE
Trans. Pattern Anal. and Machine Intelligence, 14(2):239–256, 1992.

[10] Matias Bossa, Ernesto Zacur, and Salvador Olmos. Algorithms for computing
the group exponential of diffeomorphisms: Performance evaluation. In Computer
Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer
Society Conference on, pages 1–8. IEEE, 2008.

[11] R. C. Buck. Advanced Calculus. McGraw-Hill Book Company, St. Louis, 3
edition, 1978.



www.manaraa.com

141

[12] G. E. Christensen. Deformable Shape Models for Anatomy. PhD thesis, De-
partment of Electrical Engineering, Sever Institute of Technology, Washington
University, St. Louis, MO. 63130, Aug. 1994.

[13] G. E. Christensen. Consistent linear-elastic transformations for image matching.
In A. Kuba and M. Samal, editors, Information Processing in Medical Imaging,
LCNS 1613, pages 224–237, Berlin, June 1999. Springer-Verlag.

[14] G. E. Christensen and H. J. Johnson. Consistent image registration. IEEE Trans.
Med. Imaging, 20(7):568–582, July 2001.

[15] G. E. Christensen and H. J. Johnson. Invertibility and transitivity analysis for
nonrigid image registration. Journal of Electronic Imaging, 12(1):106–117, Jan.
2003.

[16] G. E. Christensen, R. D. Rabbitt, and M. I. Miller. 3D brain mapping using a
deformable neuroanatomy. Physics in Medicine and Biology, 39:609–618, 1994.

[17] G. E. Christensen, R. D. Rabbitt, M. I. Miller, S.C. Joshi, U. Grenander, T.A.
Coogan, and D.C. Van Essen. Topological properties of smooth anatomic maps.
In Y. Bizais, C. Braillot, and R. Di Paola, editors, Information Processing in
Medical Imaging, volume 3, pages 101–112, June 1995.

[18] Gary E. Christensen, Xiujuan Geng, Jon G. Kuhl, Joel Bruss, Thomas J.
Grabowski, John S. Allen, Imran A. Pirwani, Michael W. Vannier, and Hanna
Damasio. Introduction to the non-rigid image registration evaluation project
(nirep). In 3rd International Workshop on Biomedical Image Registration, LCNS
4057, pages 128–135. Springer-Verlag, July 2006.

[19] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal.
Automated multi-modality image registration based on information theory. In
Y. Bizais, C. Braillot, and R. Di Paola, editors, Information Processing in Med-
ical Imaging, volume 3, pages 263–274. Kluwer Academic Publishers, Boston,
June 1995.

[20] W.R. Crum, T. Hartkens, and D.L.G. Hill. Non-rigid imgag registration: theory
and practice. The British Journal of Radiology, 77:140–153, 2004.

[21] R.S. Desikan, F. Segonne, B. Fischl, B.T. Quinn, B.C. Dickerson, D. Blacker,
R.L. Buckner, A.M. Dale, R.P. Maguire, B.T. Hyman, M.S. Albert, and R.J.
Killiany. An automated labeling system for subdividing the human cerebral
cortex on mri scans into gyral based regions of interest. NeuroImage, 31:968–80,
2006.



www.manaraa.com

142

[22] Paul Dupuis, Ulf Grenander, and Michael I. Miller. Variational problems on
flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics,
56(3):587–600, 1998.

[23] Stanley Durrleman. Statistical models of currents for measuring the variability
of anatomical curves, surfaces and their evolution. PhD thesis, Université Nice
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[50] Michael I Miller, Alain Trouvé, and Laurent Younes. Geodesic shooting for
computational anatomy. Journal of mathematical imaging and vision, 24(2):209–
228, 2006.

[51] Keelin Murphy, Bram Van Ginneken, J Reinhardt, Sven Kabus, Kai Ding, Xiang
Deng, and J Pluim. Evaluation of methods for pulmonary image registration:
The EMPIRE10 study. Grand Challenges in Medical Image Analysis, 2010:11–
22, 2010.

[52] Keelin Murphy, Bram Van Ginneken, Joseph M Reinhardt, Sven Kabus, Kai
Ding, Xiang Deng, Kunlin Cao, Kaifang Du, Gary E Christensen, Vincent Gar-
cia, et al. Evaluation of registration methods on thoracic ct: the EMPIRE10
challenge. Medical Imaging, IEEE Transactions on, 30(11):1901–1920, 2011.



www.manaraa.com

145

[53] Xavier Pennec, Pascal Cachier, and Nicholas Ayache. Understanding the “De-
mon’s Algorithm”: 3D Non-rigid Registration by Gradient Descent, pages 597–
605. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[54] J.P.W. Pluim, J.B.A. Maintz, and M.A. Viergever. Mutual-information-based
registration of medical images: a survey. IEEE Transactions on Medical Imaging,
22(8):986–1004, 2003.

[55] D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, and D.J. Hawkes.
Nonrigid registration using free-form deformations: application to breast mr
images. Medical Imaging, IEEE Transactions on, 18(8):712 –721, aug. 1999.

[56] D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, and D.J. Hawkes.
Nonrigid registration using free-form deformations: application to breast mr
images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999.

[57] D. Shen and C. Davatzikos. Hammer: hierarchical attribute matching mechanism
for elastic registration. IEEE Trans. on Medical Imaging, 21(11):1421–1439, Dec
2002.

[58] D. Shen and C. Davatzikos. Very high-resolution morphometry using mass-
preserving deformations and hammer elastic registration. NeuroImage, 18(1):28–
41, Jan 2003.

[59] Joo Song, Gary Christensen, Jeffrey Hawley, Ying Wei, and Jon Kuhl. Evaluating
image registration using nirep. In Bernd Fischer, Benot Dawant, and Cristian
Lorenz, editors, Biomedical Image Registration, volume 6204 of Lecture Notes in
Computer Science, pages 140–150. Springer Berlin / Heidelberg, 2010.

[60] Milan Sonka, Vaclav Hlavac, and Roger Boyle, editors. Image Processing, Analy-
sis, and Machine Vision, volume 1. Brooks/Cole Publishing, Pacific Grove, CA,
2 edition, 1998.

[61] C. Studholme, D.L.G. Hill, and D.J. Hawkes. Incorporating connected region
labelling into automated image registration using mutual information. IEEE
Proceedings of Mathematical Methods in Biomedical Image Analysis, pages 23–
30, June 1996.

[62] Colin Studholme, Derek L. G. Hill, and David J. Hawkes. Automated three-
dimensional registration of magnetic resonance and positron emission tomogra-
phy brain images by multiresolution optimization of voxel similarity measures.
Med. Phys., 24(1):25–35, 1997.



www.manaraa.com

146

[63] J.P. Thirion. Image matching as a diffusion process: an analogy with maxwell’s
demons. Medical Image Analysis, 2:243–260, 1998.
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